作物杂志,2025, 第1期: 123–132 doi: 10.16035/j.issn.1001-7283.2025.01.015

所属专题: 油料作物

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

甘肃不同地理来源大豆品种生育期性状与气象因子及农艺性状的关系

杨如萍1(), 贾贞2, 韦瑛3, 魏野畴4, 王立明1, 陈光荣1, 张国宏1, 宋雯雯5()   

  1. 1甘肃省农业科学院旱地农业研究所,730070,甘肃兰州
    2天水师范学院生物工程与技术学院,741001,甘肃天水
    3武威市农产品质量安全监督管理站,733000,甘肃武威
    4酒泉市农业科学研究院,735000,甘肃酒泉
    5中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2024-03-04 修回日期:2024-07-06 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 宋雯雯,主要从事大豆研究,E-mail:songwwsoybean@163.com
  • 作者简介:杨如萍,主要从事大豆优良品种鉴定选育研究,E-mail:rupingyang@yeah.net
  • 基金资助:
    甘肃省农业科学院重点研发计划(2021GAAS16);甘肃省农业科学院重点研发计划(2022GAAS10);国家大豆产业技术体系兰州综合试验站建设项目(CARS04-CES17);西北高油高产大豆配套栽培技术集成及示范(2023ZD0403506)

The Relationship between the Growth Period Traits of Soybean Varieties from Various Regions of Gansu and Meteorological Factors as well as Agronomic Traits

Yang Ruping1(), Jia Zhen2, Wei Ying3, Wei Yechou4, Wang Liming1, Chen Guangrong1, Zhang Guohong1, Song Wenwen5()   

  1. 1Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Bioengineer and Technology, Tianshui Normal University, Tianshui 741001, Gansu, China
    3Wuwei Municipal Agriculture Product Quality and Safety Supervision and Management Station, Wuwei 733000,Gansu, China
    4Jiuquan Academy of Agricultural Sciences Research, Jiuquan 735000, Gansu, China
    5Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-03-04 Revised:2024-07-06 Online:2025-02-15 Published:2025-02-12

摘要:

以2011-2013年甘肃5个不同生态试验点种植的161份甘肃各地大豆种质资源的生育期相关性状数据为基础,结合2011年大豆生长期的气象数据,分析甘肃不同区域大豆品种生育期相关性状分布特征,明确影响各区域大豆品种生育期性状的关键气象因子,以及农艺性状与生育期性状之间的关系。结果表明,参试材料出苗至生理成熟日数(VE~R7)在75~197 d,随着材料来源地经度东移、纬度降低,大豆VE~R7平均日数及营养生长期(VE~R1)逐渐延长,生殖生长期/营养生长期(R/V)逐渐减小。随着种植地点由北向南,VE~R1均值逐渐缩短,R/V逐渐升高。同一区域育成品种的平均R/V均高于地方品种。汾豆8号等11个品种在多个试点VE~R7基本一致。在气象因素中,除可照时数是影响来自河西地区大豆品种VE~R7长度的最大直接因素外,平均气温>10 ℃的日数是影响甘肃大豆品种生育期长度的最大直接因素。VE~R7、VE~R1和R1~R7与株高、主茎节数、单株重、底荚高度和有效分枝数均呈正相关关系,但与单株荚数、单株粒数、单株粒重和百粒重的关系各来源区域间并不一致。

关键词: 甘肃, 大豆, 生育期, 生态特征, 气象因子, 农艺性状

Abstract:

By examining the maturity-related traits of 161 soybean samples from different parts of Gansu (grown in five ecological pilots in Gansu, 2011-2013) and meteorological data during the 2011 soybean growing season, we investigated the distribution characteristics of maturity-related traits, the major climatic factor affecting maturity-related traits, and the relationships between maturity-related traits and agronomic traits in different planting regions in Gansu. The results showed that the distribution of vegetative emergence to beginning maturity duration (VE-R7) days of the samples was 75-197 d. As the sample source area shifted southeastward, the VE-R7 duration days and vegetative growth period (VE-R1) gradually increased, and R/V (the ratio of R to V) gradually decreased. With the southward shift of planting sites, the vegetative growth period gradually decreased, and the R/V gradually increased. In the same region, the average R/V of all breeding varieties were higher than that of local varieties. VE-R7 of 11 varieties such as Fendou 8 had slight data differences in multiple planting sites. Among the meteorological factors, possible sunshine duration was the largest direct factor affecting the VE-R7 duration of soybean varieties in Hexi Corridor, and number of days with average air temperature >10 ℃ was the largest direct factor affecting the maturity-related traits in Gansu. VE-R7, VE-R1 and R1-R7 had positive correlations with plant height, number of main stem nodes, weight per plant, bottom pod height, and number of effective branches, but the relationships with the number of pods per plant, number of seeds per plant, weight of seeds per plant and 100-grain weight were not consistent among regions.

Key words: Gansu province, Soybean, Growth period, Ecological characteristics, Meteorological factors, Agronomic traits

表1

试验地点信息及品种情况

试验地点
Experimental site
经度
Longitude
纬度
Latitude
播种日期
Sowing date
供试样本数目Number of the test materials
河西地区HC 陇中地区CG 陇东旱塬区LP 陇南地区SG 合计Total
肃州Suzhou 98°30′36″ 39°46′48″ 2011-04-23 24 26 43 59 152
凉州Liangzhou 102°36′00″ 37°55′12″ 2011-04-23 23 24 37 45 129
靖远Jingyuan 104°31′48″ 37°24′00″ 2011-04-17 24 26 47 60 157
会宁Huining 104°30′00″ 36°7′48″ 2012-04-13 11 13 27 18 69
2013-04-10 13 16 32 18 79
麦积Maiji 105°52′12″ 34°34′12″ 2011-04-17 24 26 46 60 156

图1

甘肃不同区域大豆品种VE~R7的分布

图2

甘肃不同区域大豆品种VE~R7在各试点的对比

表2

甘肃不同区域大豆品种在各试点的R/V值

试验地点
Experimental
site
河西地区HC 陇中地区CG 陇东旱塬区LP 陇南地区SG
平均值
Average
数量
Number
平均值
Average
数量
Number
平均值
Average
数量
Number
平均值
Average
数量
Number
肃州Suzhou 1.31±0.63 16 1.85±0.94 8 1.19±0.38 14 1.06±0.42 9
凉州Liangzhou 1.50±0.23 20 1.25±0.31 22 1.17±0.29 33 1.02±0.24 27
靖远Jingyuan 1.48±0.29 21 1.17±0.19 24 1.22±0.22 42 1.06±0.20 52
会宁Huining 1.58±0.19 11 1.43±0.35 16 1.40±0.32 31 1.12±0.27 17
麦积Maiji 2.16±0.41 21 1.79±0.52 24 1.70±0.60 42 1.29±0.38 50
总计Total 1.63±0.49 89 1.45±0.51 94 1.37±0.44 162 1.13±0.31 155

图3

甘肃不同区域大豆品种VE~R1和R1~R7的分布

图4

甘肃不同区域大豆品种VE~R7的变异系数分布

表3

不同试验地点大豆品种生育期(VE~R7)变异系数的聚类分析

类群
Group
品种数量
Number of varieties
变异系数
Variation coefficient (%)
I 3 16.35~20.41
II 7 12.28~16.34
III 22 8.21~12.27
IV 54 4.15~8.20
V 54 0.08~4.14

表4

代表性大豆品种在不同试验地点的生育期VE~R7变异系数

品种
Variety
来源区域
Source region
VE~R7
平均Average (d) 变异系数
Variation coefficient (%)
参试地点数目
Number of experimental sites
汾豆63 Fendou 63 陇东 130.59±5.16 3.95 5
汾豆8号Fendou 8 河西 129.01±1.85 1.43 4
黑龙8号Heilong 8 河西 130.15±3.20 2.46 3
黑熊3号Heixiong 3 河西 129.41±5.15 3.98 4
晋豆20 Jindou 20 河西 123.89±4.45 3.59 5
临洮黄豆-4 Lintaohuangdou-4 陇中 124.90±2.43 1.95 3
陇豆2号Longdou 2 陇中 140.29±5.02 3.58 4
美国窄叶豆Meiguozhaiyedou 陇东 131.42±4.77 3.63 4
中黄13 Zhonghuang 13 陇东 138.31±2.90 2.1 3
中黄24 Zhonghuang 24 陇东 143.84±5.18 3.6 4
中黄30 Zhonghuang 30 陇东 117.82±1.80 1.52 4
中黄30 Zhonghuang 30 河西 120.73±3.89 3.22 4

表5

甘肃不同区域大豆品种生育期性状与主要气象影响因素的通径分析

生育期
Growth
period
通径系数
Path
coefficient
平均气温
Average air
temperature
平均气温
>10 ℃的日数
Days with
average air
temperature
>10 ℃
平均气温
>20 ℃的日数
Days with
average air
temperature
>20 ℃
日平均
最高气温
Daily
average
maximum
temperature
日平均
最低气温
Daily
average
minimum
temperature
日照
时数
Sunshine
hours
可照
时数
Possible
sunshine
duration
降水量
Precipitation
最大日
降水量
Maximum
daily
precipitation
日降水量
≥0.1 mm日数
Days with daily
precipitation
≥0.1 mm
河西地区HC
VE~R7 直接 0.216 0.472 -0.199 0.062 0.381 0.508 -0.626 -0.278
间接 -0.213 0.498 0.582 0.351 -0.581 0.116 0.150 0.166
VE~R1 直接 0.903 0.147 0.055
间接 0.090 0.643 -0.467
R1~R7 直接 1.016 -0.027 0.013
间接 -0.016 0.836 0.438
陇中地区CG
VE~R7 直接 0.586 0.076 -0.145 -0.429 0.084 -0.143
间接 0.405 0.150 0.107 -0.419 0.302 0.169
VE~R1 直接 0.021 1.067 -0.072 -0.023 0.051
间接 0.816 -0.068 0.725 0.892 -0.393
R1~R7 直接 -0.028 1.210 -0.423 -0.051 0.151
间接 -0.037 -0.229 1.114 -0.057 0.450
陇东旱塬区LP
VE~R7 直接 0.554 0.034 0.262 -0.382
间接 0.429 -0.023 0.262 -0.430
VE~R1 直接 0.021 1.067 -0.072 -0.023 0.051
间接 0.837 0.999 0.653 0.869 -0.342
R1~R7 直接 -0.028 1.210 -0.423 -0.051 0.151
间接 -0.065 0.981 0.691 -0.108 0.601
陇南地区SG
VE~R7 直接 0.811 -0.099 -0.264 -0.180
间接 0.072 0.252 -0.481 0.454
VE~R1 直接 0.011 0.983 -0.013 0.041 -0.028
间接 0.787 0.016 -0.348 0.102 0.101
R1~R7 直接 1.234 -0.510 0.223
间接 -0.253 1.250 0.478
整体Overall
VE~R7 直接 1.048 -0.064
间接 -0.051 0.839
VE~R1 直接 -0.030 1.143 -0.130
间接 0.738 -0.143 1.061
R1~R7 直接 0.990 -0.014 0.010
间接 0.009 -0.514 0.137

表6

甘肃不同区域大豆品种的农艺性状特征

性状
Trait
河西地区
HC
陇中地区
CG
陇东旱塬区
LP
陇南地区
SG
相关系数(Eta)
Correlation coefficient (Eta)
株高Plant height (cm) 55.41±27.24c 75.82±38.05b 77.50±37.33b 90.21±36.51a 0.298
主茎节数Number of main stem nodes 17.37±5.14d 18.52±4.43c 19.52±4.46b 21.11±4.28a 0.264
底荚高度Bottom pod height (cm) 6.96±3.70c 9.54±5.24b 10.10±6.38b 13.37±5.20a 0.336
有效分枝数Number of effective branches 3.21±2.13c 4.05±2.17b 4.27±2.14b 4.94±2.12a 0.240
单株重Weight per plant (g) 66.96±37.70c 71.10±37.56bc 80.19±44.81ab 85.44±43.95a 0.153
单株荚数Number of pods per plant 84.03±48.27c 102.64±63.46b 108.53±63.01b 120.53±58.07a 0.185
单株粒数Number of seeds per plant 167.57±94.44b 171.66±92.31b 195.44±109.01a 193.99±110.81a 0.116
单株粒重Weight of seeds per plant (g) 33.77±21.20ab 30.78±18.03b 35.91±22.09a 32.63±17.09ab 0.100
百粒重100-grain weight (g) 20.86±6.53a 19.16±6.26b 18.68±5.87b 17.98±6.35b 0.145

图5

甘肃不同区域大豆品种农艺性状与生育期性状的相关性 “*”表示相关性不显著。

[1] 韩天富, 盖钧镒, 陈风云, 等. 生育期结构不同的大豆品种的光周期反应和农艺性状. 作物学报, 1998, 24(5):550-557.
[2] 梁建秋, 于晓波, 安建刚, 等. 国家大豆试验品种(系)生育期组归属研究. 中国油料作物学报, 2022, 44(3):555-561.
doi: 10.19802/j.issn.1007-9084.2021189
[3] 王英, 吴存祥, 张学明, 等. 不同光周期条件下大豆生育期主基因的效应. 作物学报, 2008, 34(7):1160-1168.
[4] 姜芬芬, 孙磊, 刘方东, 等. 世界大豆生育阶段光温综合反应的地理分化和演化. 中国农业科学, 2022, 55(3):451-466.
doi: 10.3864/j.issn.0578-1752.2022.03.003
[5] 任全兴, 盖钧镒, 马育华. 我国大豆品种生育期生态特性研究. 中国农业科学, 1987, 20(5):23-28.
[6] 王石宝. 早熟大豆在不同生态环境下生育期变化规律研究. 山西农业大学学报, 1997, 17(3):32-35.
[7] 赵晋忠, 吴慎杰, 杜维俊, 等. 不同生育期大豆品种蛋白质、脂肪积累的变化规律及其与品质的关系. 华北农学报, 2004, 19(4):33-35.
doi: 10.3321/j.issn:1000-7091.2004.04.010
[8] 贾鸿昌, 闫洪睿, 张雷, 等. 大豆品种生育期分类的研究进展. 大豆科学, 2013, 32(2):271-275.
[9] 盖钧镒, 汪越胜, 张孟臣, 等. 中国大豆品种熟期组划分的研究. 作物学报, 2001, 27(3):286-292.
[10] 王国勋, 罗学华, 李友华. 论我国南北大豆生育期生态类型及在引种工作中的应用. 大豆科学, 1982, 1(1):33-40.
[11] 李志强, 刘学录. 甘肃地貌区划与地貌条件的农业评价. 甘肃农业大学学报, 1994, 30(4):444-449.
[12] 刘彦随, 张紫雯, 王介勇. 中国农业地域分异与现代农业区划方案. 地理学报, 2018, 73(2):203-218.
doi: 10.11821/dlxb201802001
[13] 张国宏, 倪胜利, 王立明, 等. 甘肃省大豆生产现状及发展对策. 甘肃农业科技, 2009(8):39-41.
[14] 杨如萍, 宋雯雯, 韦瑛, 等. 甘肃省大豆品种生育期组的划分及地理分布研究. 植物遗传资源学报, 2021, 22(2):349-360.
[15] Fehr W R, Caviness C E, Burmood D T, et al. Stage of development descriptions for soybeans, [Glycine max (L.) Merrill]. Crop Science, 1971, 11:929-931.
[16] 邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:58-75.
[17] 宋雯雯, 李继存, 赵云, 等. 中国大豆微核心种质光温综合反应敏感性的鉴定. 植物遗传资源学报, 2020, 21(1):146-153.
[18] 韩天富, 王金陵. 中国大豆不同生态类型开花至成熟期对光周期的反应. 作物学报, 1996, 22(1):20-26.
[19] 姜妍, 冷建田, 费志宏, 等. 广适应大豆品种中黄13的光周期反应. 大豆科学, 2009, 28(3):377-381.
[20] 徐豹, 路琴华. 大豆生态研究—Ⅰ.中国不同纬度野生大豆的光温生态分析. 大豆科学, 1983, 2(3):155-168.
[21] 费志宏, 吴存祥, 孙洪波, 等. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009, 35(8):1525-1531.
[22] 丁艳来, 赵团结, 盖钧镒. 中国野生大豆的遗传多样性和生态特异性分析. 生物多样性, 2008(2):133-142.
doi: 10.3724/SP.J.1003.2008.07286
[23] 王英. 大豆生育期结构性状的遗传分析及相关基因的分子标记. 北京: 中国农业科学院, 2008.
[24] 孙志强, 田佩占, 王继安. 东北大豆品种生育期结构的初步分析. 大豆科学, 1990, 9(3):198-205.
[25] 朱贝贝, 孙石, 韩天富, 等. 中国不同地区野生大豆与栽培大豆生育期长度及结构性状的比较. 大豆科学, 2012, 31(6):894-898.
[26] Oliveira A C B D, Sediyama C S, Cruz C D. Selection for later flowering in soybean (Glycine max L. Merrill) F2 populations cultivated under short day conditions. Genetics and Molecular Biology, 1999, 22(2):243-247.
[27] Tsubokura Y, Watanabe S, Xia Z, et al. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany, 2014, 113(3):429-441.
doi: 10.1093/aob/mct269 pmid: 24284817
[28] Kumar B, Talukdar A, Bala I, et al. Population structure and association mapping studies for important agronomic traits in soybean. Journal of Genetics, 2014, 93(3):775-784.
pmid: 25572236
[29] Egli D B, Guffy R D, Leggett J E. Partitioning of assimilate between vegetative and reproductive growth in soybean. Agronomy Journal, 1985, 77(6):917-922.
[30] Bheemanahalli R, Poudel S, Alsajri F A, et al. Phenotyping of southern united states soybean cultivars for potential seed weight and seed quality compositions. Agronomy, 2022, 12(4):839.
[31] 刘念析, 李穆, 李秀平, 等. 大豆主要农艺性状间的相关性分析. 大豆科学, 2013, 32(4):570-572.
[32] 王燕平, 宗春美, 孙晓环, 等. 东北春大豆种质资源表型分析及综合评价. 植物遗传资源学报, 2017, 18(5):837-845.
[33] 张小利. 大豆株型相关性状及百粒重的关联分析与候选基因挖掘. 南京:南京农业大学, 2019.
[34] 杨胜先, 牛远, 李梦, 等. 栽培大豆农艺性状的关联分析及优异等位变异挖掘. 中国农业科学, 2014, 47(20):3941-3952.
doi: 10.3864/j.issn.0578-1752.2014.20.002
[35] 韩秉进, 潘相文, 金剑, 等. 大豆农艺及产量性状的主成分分析. 大豆科学, 2008, 27(1):67-73.
[36] Todeschini M H, Milioli A S, Rosa A C, et al. Soybean genetic progress in South Brazil: physiological, phenological and agronomic traits. Euphytica, 2019, 215(7):124.
[37] Wang X B, Liu Z X, Yang C Y, et al. Stability of growth periods traits for soybean cultivars across multiple locations. Journal of Integrative Agriculture, 2016, 15(5):963-972.
[38] Liu Y J, Dai L. Modelling the impacts of climate change and crop management measures on soybean phenology in China. Journal of Cleaner Production, 2020, 262:121271.
[39] Board J E, Hall W. Premature flowering in soybean yield reductions at nonoptimal planting dates as influenced by temperature and photoperiod. Agronomy Journal, 1984, 76(4):700-704.
[40] 曲辉辉, 朱海霞, 王秋京, 等. 气候变化对东北三省大豆生育期和产量的影响模拟. 西北农林科技大学学报(自然科学版), 2014, 42(7):61-69.
[41] Destro D, Carpentieri-Pípolo V, de Souza Kiihl R A, et al. Photoperiodism and genetic control of the long juvenile period in soybean: A review. Crop Breeding and Applied Biotechnology, 2001, 1(1):72-92.
[42] 杨森, 孙国钧, 何文莹, 等. 西北旱寒区地理、地形因素与降雨量及平均温度的相关性——以甘肃省为例. 生态学报, 2011, 31(9):2414-2420.
[43] 史建桥, 白淑英, 周寅, 等. 近50年甘肃日照时数时空变化特征及突变分析. 南京信息工程大学学报(自然科学版), 2016, 8(1):64-70.
[1] 颜群翔, 庞玉辉, 洪壮壮, 毕俊鸽, 王春平. 141份国内外小麦种质资源主要性状遗传多样性分析与特异性评价[J]. 作物杂志, 2025, (1): 26–34
[2] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[3] 马丽娜, 魏玉明, 文莉芳, 张学俭, 杨钊, 黄杰, 张圣昌, 李小雨, 刘欢, 杨发荣. 云南元谋地区22份藜麦种质的农艺性状及营养品质分析[J]. 作物杂志, 2024, (6): 47–54
[4] 孙远涛, 龙文靖, 刘天朋, 赵甘霖, 丁国祥, 向箭宇, 李元, 黄磊, 倪先林. 12个糯高粱亲本的主要性状配合力及相关性分析[J]. 作物杂志, 2024, (6): 84–90
[5] 张东杰, 张喆钧, 阿依丁库力·沙黑多拉, 桑塔那提·阿斯卡尔, 吾买尔夏提·塔汉. 新疆糜子地方种杂交后代农艺性状的遗传规律研究[J]. 作物杂志, 2024, (6): 97–102
[6] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[7] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[8] 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241–246
[9] 董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 29–34
[10] 马延华, 孙德全, 李绥艳, 林红, 潘丽艳, 李东林, 范金生, 吴建忠, 杨国伟. 黑龙江省玉米地方品种主要农艺性状综合评价及优异种质资源筛选[J]. 作物杂志, 2024, (4): 103–112
[11] 袁迪, 智慧, 王海岗, 张慧, 姚琦, 梁红凯, 王君杰, 陈凌, 刁现民, 贾冠清. 我国谷子登记品种遗传多样性分析及综合评价[J]. 作物杂志, 2024, (4): 14–23
[12] 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203–208
[13] 李春花, 吴晗, 加央多拉, 王春龙, 王艳青, 任长忠. 播期对甜荞品种(系)农艺性状及产量的影响[J]. 作物杂志, 2024, (4): 216–222
[14] 宋全昊, 曹燕威, 金艳, 肖永贵, 宋佳静, 赵立尚, 陈杰, 白冬, 朱统泉. 50份ICARDA新引进小麦种质资源的综合评价[J]. 作物杂志, 2024, (4): 54–61
[15] 解慧芳, 魏萌涵, 宋中强, 刘金荣, 王素英, 邢璐, 王淑君, 刘海萍, 贾小平, 宋慧. 谷子主要性状主基因多基因混合遗传模型分析[J]. 作物杂志, 2024, (4): 82–89
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!