作物杂志,2016, 第2期: 50–56 doi: 10.16035/j.issn.1001-7283.2016.02.009

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

作物叶片蛋白质组提取与酶切方法比较研究

苏小琴1,3,魏红茹2,3,段双梅1,赵明1,潘映红3   

  1. 1 云南农业大学龙润普洱茶学院,650201,云南昆明
    2 河北农业大学农学院,071000,河北保定
    3 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,100081,北京
  • 收稿日期:2015-10-27 修回日期:2016-03-04 出版日期:2016-04-15 发布日期:2018-08-26
  • 通讯作者: 赵明
  • 作者简介:苏小琴,在读硕士研究生,主要从事蛋白质组学研究
  • 基金资助:
    中国农业科学院科技创新工程(作物分子标记技术及其应用科研创新团队)

Comparison of Preparation and Digestion for Crop Leaf Proteomes

Su Xiaoqin1,3,Wei Hongru2,3,Duan Shuangmei1,Zhao Ming1,Pan Yinghong3   

  1. 1 College of Longrun Puer Tea,Yunnan Agricultural University,Kunming 650201,Yunnan,China
    2 College of Agronomy,Hebei Agriculture University,Baoding 071000,Hebei,China
    3 Institute of Crop Science,Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Beijing 100081,China
  • Received:2015-10-27 Revised:2016-03-04 Online:2016-04-15 Published:2018-08-26
  • Contact: Ming Zhao

摘要:

蛋白质组样品制备主要涉及蛋白质的提取和酶切处理,是蛋白质组学分析的限制环节之一。为了提高作物叶片蛋白质组样品制备的效率和重复性,系统比较了6种缓冲液(pH8.5 Tris-HCl酚、pH7.0磷酸盐、pH9.0碳酸盐、尿素/硫脲、pH8.0 Tris-HCl、pH4.5醋酸盐)和TCA-丙酮处理对水稻、小麦、大豆和玉米叶片蛋白质提取的影响,同时以小麦叶片总蛋白和牛血清白蛋白为样本,比较了传统方法和微波辅助方法的酶切效率。结果表明,TCA-丙酮处理的小麦和水稻样品采用尿素/硫脲方法能获得较高的蛋白得率,而玉米和大豆样品采用尿素/硫脲直接提取时蛋白质得率更高,同时,微波辅助酶切值得用于蛋白质组样品制备。本研究采用适当的蛋白质提取和酶切方法,有效提高了蛋白质的提取率和鉴定率,可为进一步深入开展作物叶片的蛋白质组学研究提供借鉴。

关键词: 蛋白质组, 样品制备, 蛋白酶切, 作物, 叶片

Abstract:

The sample preparation, extraction and protein digestion, are key steps in proteomics analysis. In order to improve the efficiency and repeat ability of crop leaf proteome samples, the leaves of rice, wheat, soybean and corn were respectively extracted with six buffers (pH4.5 acetic acid salt, pH7.0 phosphate, pH8.0 Tris-HCl, pH8.5 Tris- HCl phenol, pH9.0 carbonate, and urea-thiourea), and pretreatment with TCA-acetone. And then, the proteins extracted from wheat leaves and bovine serum albumin were digested by standard trypsin digestion and microwave-assisted digestion. SDS-PAGE and protein extraction rates showed that TCA-acetone precipitation combined with urea-thiourea extraction was suitable for preparation of rice and wheat leaf protein, and urea-thiourea extraction without TCAacetone precipitation was suitable for preparation of corn and soybean leaf protein. LC-MS-MS analysis of digested peptides suggested that standard and microwave-assisted digestion were both effective in proteomics analysis. Together, the protocol for preparation of proteome samples from leaves of rice, wheat, soybeans and corn was developed. This study confirmed that, the method by using the appropriate protein extraction method combining microwave-assisted digestion, could effectively improve the coverage and efficiency of crop leaf proteome analysis.

Key words: Proteome, Sample preparation, Protein digestion, Crop, Leaf

图1

不同缓冲液提取物SDS-PAGE1.pH8.5 Tris-HCl酚Tris-HCl phenol;2.pH7.0 磷酸盐pH7.0 phosphate;3.pH9.0碳酸盐pH9.0 carbonate;4.尿素/硫脲Urea-thiourea;5.pH8.0三氨基甲烷pH8.0 Tris-HCl;6.pH4.5醋酸盐pH4.5 acetic acid salt;M.250kDa"

图2

不同缓冲液和预处理方法的蛋白得率 1.pH8.5 Tris-HCl酚Tris-HCl phenol;2.pH7.0 磷酸盐pH7.0 phosphate;3.pH9.0碳酸盐pH9.0 carbonate;4.尿素/硫脲Urea-thiourea;5.pH8.0三氨基甲烷pH8.0 Tris-HCl;6.pH4.5醋酸盐pH4.5 acetic acid salt"

图3

尿素/硫脲提取物SDS-PAGE1,2.水稻Rice;3,4.小麦Wheat;5,6.大豆Soybean;7,8.玉米Corn;M.250kDa"

图4

尿素/硫脲重复提取物的SDS-PAGE a.丙酮沉淀的水稻、小麦、大豆和玉米尿素/硫脲提取物(10%分离胶)Extracts of rice,wheat,soybean and corn precipited with acetone(10% resolving gel); 1.水稻Rice;2.小麦Wheat;3.大豆Soybean;4.玉米Corn;M.250kDa b.TCA-丙酮预处理水稻的尿素/硫脲提取物(12%分离胶)Proteins from rice pretreated with TCA-acetone(12% resolving gel); c.TCA-丙酮预处理小麦的尿素/硫脲提取物(11%分离胶)Proteins from wheat pretreated with TCA-acetone(11% resolving gel); d.大豆的尿素/硫脲提取物(10%分离胶)Proteins extracted from soybean (10% resolving gel); e:玉米的尿素/硫脲提取物(10%分离胶)Proteins extracted from corn (10% resolving gel)"

表1

传统酶切和微波辅助酶切牛血清白蛋白"

酶切方法Digestion 酶切时间(h)
Digestion time
牛血清白蛋白覆盖率(%)BSA coverage
0漏切位点
0 missed cleavages
1漏切位点
1 missed cleavages
2漏切位点
2 missed cleavages
传统酶切Standard digestion 20.0 74.55 21.82 3.64
微波辅助酶切Microwave-assisted digestion 3.3 70.77 23.82 6.15

图5

两种方法酶切小麦总蛋白后的总离子流图(TIC)和质谱鉴定结果"

[1] Olszowy P, Buszewski B . Urine sample preparation for proteomic analysis. Journal of Separation Science, 2014,37(20):2920-2928.
doi: 10.1002/jssc.v37.20
[2] Carpentier S C, Witters E, Laukens K , et al. Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics, 2005,5(10):2497-2507.
doi: 10.1002/(ISSN)1615-9861
[3] Isaacson T, Damasceno C M, Saravanan R S , et al. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 2006,1(2):769-774.
doi: 10.1038/nprot.2006.102
[4] Koroleva O A, Bindschedler L V . Efficient strategies for analysis of low abundance proteins in plant proteomics//Sample preparation in biological mass spectrometry. Springer, 2011,23(8):1440.
[5] Feng T . Challenges and current solutions in proteomic sample preparations//Nutrigenomics and proteomics in health and disease:Food factors and gene interactions.Wiley‐ Blackwell, 2009: 351-365.
[6] Saravanan R S , Rose J K C.A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004,4(9):2522-2532.
doi: 10.1002/(ISSN)1615-9861
[7] Grassl J, Westbrook J, Robinson A , et al. Preserving the yeast proteome from sample degradation. Proteomics, 2009,9(20):4616-4626.
doi: 10.1002/pmic.200800945
[8] León I R, Schwämmle V, Jensen O N , et al. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Molecular & Cellular Proteomics, 2013,12(10):2992-3005.
[9] Kim S C, Chen Y, Mirza S , et al. A clean,more efficient method for in-solution digestion of protein mixtures without detergent or urea. Journal of Proteome Research, 2007,5(12):3446-3452.
[10] Ardila H D, Fernández R G, Higuera B L , et al. Protein Extraction and Gel-Based Separation Methods to Analyze Responses to Pathogens in Carnation (Dianthus caryophyllus L.)//Plant Proteomics. Humana Press, 2014: 573-591.
[11] Pua T L, Loh H S, Massawe F , et al. Expression of insoluble influenza neuraminidase Type 1 (NA1) protein in yobacco. Journal of Tropical Life Science, 2012,2(3):62-71.
doi: 10.11594/jtls
[12] Cheng Y T, Li Y, Huang S , et al. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proceedings of the National Academy of Sciences, 2011,108(35):14694-14699.
doi: 10.1073/pnas.1105685108
[13] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1):248-254.
doi: 10.1016/0003-2697(76)90527-3
[14] Wisniewski J R, Zougman A, Nagaraj N , et al. Universal sample preparation method for proteome analysis. Nature Methods, 2009,6(5):359-362.
doi: 10.1038/nmeth.1322
[15] Pluskal M G, Bogdanova A, Lopez M , et al. Multiwell in-gel protein digestion and microscale sample preparation for protein identification by mass spectrometry. Proteomics, 2002,2(2):145-150.
doi: 10.1002/(ISSN)1615-9861
[16] Zhou J Y . A simple sodium dodecyl sulfate-assisted sample preparation method for LC-MS-based proteomics applications. Analytical Chemistry, 2012,84(6):2862-2867.
doi: 10.1021/ac203394r
[17] Kushnirov V V . Rapid and reliable protein extraction from yeast. Yeast, 2000,16(9):857-860.
doi: 10.1002/(ISSN)1097-0061
[18] Von D H T . Optimized protein extraction for quantitative proteomics of yeasts. Plos One, 2007,2(10):e1078.
doi: 10.1371/journal.pone.0001078
[19] Sun W, Gao S, Wang L , et al. Microwave-assisted protein preparation and enzymatic digestion in proteomics. Molecular & Cellular Proteomics, 2006,5(4):769-776.
[1] 吴 昊, 李燕敏 谢传晓. 作物耐热生理基础与基因发掘研究进展[J]. 作物杂志, 2018, (5): 1–9
[2] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7
[3] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13–19
[4] 陈亮妹,李江遐,胡兆云,叶文玲,吴文革,马友华. 重金属低积累作物在农田修复中的研究与应用[J]. 作物杂志, 2018, (1): 16–24
[5] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[6] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[7] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[8] 周彤,陈雯,秦培亮,刘涛,孙成明. 作物水分智能管理研究进展[J]. 作物杂志, 2017, (5): 7–13
[9] 熊辉岩,段瑞君,王瑞生. 冷驯化影响越冬作物光合特性和株型特征的生理基础与分子机制的研究进展[J]. 作物杂志, 2017, (4): 21–26
[10] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[11] 李燕敏,祁显涛,刘昌林,刘方,谢传晓. 除草剂抗性农作物育种研究进展[J]. 作物杂志, 2017, (2): 1–6
[12] 陈霞燕,王连喜,任景全,郭春明,李琪,李莹莹. 吉林省春玉米生产潜力及其敏感性分析[J]. 作物杂志, 2016, (6): 91–98
[13] 焦悦,梁晋刚,翟勇. 转基因作物安全评价研究进展[J]. 作物杂志, 2016, (5): 1–7
[14] 石景雨,何丽莲,王先宏,李富生. 不同甘蔗品种叶片中总黄酮含量与提取工艺的优化研究[J]. 作物杂志, 2016, (5): 19–24
[15] 张耗,杨建昌. 三种主要粮食作物的节水灌溉技术及其对产量和水分利用率的影响[J]. 作物杂志, 2016, (5): 67–74
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .