作物杂志,2016, 第5期: 67–74 doi: 10.16035/j.issn.1001-7283.2016.05.012

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

三种主要粮食作物的节水灌溉技术及其对产量和水分利用率的影响

张耗,杨建昌   

  1. 扬州大学农学院/粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2016-05-18 修回日期:2016-07-18 出版日期:2016-10-15 发布日期:2018-08-26
  • 通讯作者: 杨建昌
  • 作者简介:张耗,副教授,主要从事作物栽培生理研究
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2012CB114306);国家重点基础研究发展计划(973计划)项目(2015CB150404);江苏省高校自然科学研究重大项目(15KJA210005);江苏高校优势学科建设工程资助项目;扬州大学高端人才支持计划

Water-Saving Irrigation Techniques of Three Major Food Crops and Their Effects on Grain Yield and Water Use Efficiency

Zhang Hao,Yang Jianchang   

  1. College of Agronomy/Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University,Yangzhou 225009,Jiangsu,China
  • Received:2016-05-18 Revised:2016-07-18 Online:2016-10-15 Published:2018-08-26
  • Contact: Jianchang Yang

摘要:

以三种主要粮食作物(水稻、小麦、玉米)为材料,设置常规灌溉(对照)和节水灌溉处理(水稻全生育期轻干湿交替灌溉技术、小麦控制土壤干旱灌溉技术、玉米控制低限土壤水分的分区交替灌溉技术),研究了节水灌溉技术对三种粮食作物产量和水分利用效率的影响。结果表明:与对照相比,节水灌溉技术的产量增加了8.56%~9.23%,水分利用效率提高了25.00%~31.43%。节水灌溉技术显著降低了三种粮食作物叶片的蒸腾速率和着生角度,显著增加了弱势粒中脱落酸(ABA)与赤霉素(GA3)的比值(ABA/GA3)、茎中蔗糖磷酸合成酶(SPS)和子粒中蔗糖合酶(SuS)活性、平均灌浆速率、茎鞘中非结构性碳水化合物(NSC)的运转率以及收获指数,显著提高了水稻和小麦的分蘖成穗率。表明减少奢侈的蒸腾和无效分蘖冗余生长、改善冠层结构、促进物质运转和子粒库活性、提高收获指数是节水灌溉技术协同提高产量和水分利用效率的重要原因。

关键词: 粮食作物, 节水灌溉, 产量, 水分利用效率

Abstract:

Three major food crops, rice, wheat and maize, were grown in field. Two treatments, conventional irrigation (control) and water-saving irrigation techniques, i.e., alternate wetting and moderate soil drying throughout the growing season in rice, controlled soil drying irrigation in wheat, and root partial and alternate irrigation in maize, were conducted. The effects of water-saving irrigation techniques on grain yield and water use efficiency (WUE) of the three crops was investigated. The results showed that, compared with the control, the water-saving irrigation techniques increased grain yield by 8.56%~9.23% and water use efficiency by 25.00%~31.43%. The water-saving irrigation techniques significantly decreased transpiration rate and the angle of the top leaves, significantly increased the ratio of abscisic acid (ABA) to gibberellic acids (GA3) in inferior spikelets (ABA/GA3), activities of sucrose phosphate synthase (SPS) in culms and sucrose synthase (SuS) in grains, average grain-filling rate, remobilization rate of non-structural carbohydrate (NSC) in culms and harvest index of the three crops. The water-saving irrigation techniques could also significantly increase the percentage of productive tillers in rice and wheat. The results suggest that decreased luxurious transpiration and redundant growth of non-productive tillers, improved canopy structure, enhanced remobilization and sink activity, and increased harvest index would contribute to the increase in grain yield and WUE under the water-saving irrigation techniques.

Key words: Food crops, Water-saving irrigation, Grain yield, Water use efficiency

表1

小麦控制土壤干旱灌溉技术"

土壤类型
Soil type
越冬前Pre-winter 拔节期Jointing stage 孕穗期Booting stage 开花期Flowering stage
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
粘土Clay -25 40 -35 40 -30 40 -35 40
壤土Loam -25 45 -35 45 -30 45 -35 45
砂土Sand -25 50 -35 50 -30 50 -35 50

表2

玉米控制低限土壤水分的分区交替灌溉技术"

土壤类型
Soil type
出苗期(播种-3叶期)
Sprouting stage
(Sowing-3 leaf stage)
苗期(3叶期-拔节)
Seeding stage
(3 leaf stage-Jointing)
穗期(拔节-开花)
Panicle stage
(Jointing-Flowering)
花粒期(开花-成熟)
Anthesis and kernel stage
(Flowering-Maturity)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
粘土Clay -10 40 -35 40 -40 40 -40 40
壤土Loam -10 45 -35 45 -40 45 -40 45
砂土Sand -10 50 -35 50 -40 50 -40 50

表3

节水灌溉对作物产量和水分利用效率的影响"

地点/作物
Place/Crop
灌溉方式
Irrigation regime
产量(t/hm2)
Yield
灌溉水量(mm)
Irrigation water
降水量(mm)
Precipitation
水分利用效率(kg/m3)
Water use efficiency
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
9.05
660
605
0.72
轻干湿交替灌溉
Alternate wetting and moderate soil drying
9.78*
485*
605
0.90*
小麦Wheat
常规灌溉
Conventional irrigatio
7.69
185
380
1.36
控制灌溉
Controlled soil drying irrigation
8.52*
145*
380
1.62*
玉米(夏) Maize (Summer)
常规灌溉
Conventional irrigatio
9.02
190
345
1.69
分区交替灌溉
Root partial and alternate irrigation
9.75*
100*
345
2.19*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
8.67
764
507
0.68
轻干湿交替灌溉
Alternate wetting and moderate soil drying
9.50*
597*
507
0.86*
小麦Wheat
常规灌溉
Conventional irrigatio
8.35
255
292
1.52
控制灌溉
Controlled soil drying irrigation
9.00*
155*
292
1.98*
玉米(夏) Maize (Summer)
常规灌溉
Conventional irrigatio
9.20
230
275
1.81
分区交替灌溉
Root partial and alternate irrigation
10.10*
140*
275
2.41*

表4

节水灌溉对作物光合作用、分蘖成穗率和冠层叶片着生角度的影响"

地点/作物
Place/Crop
灌溉方式
Irrigation regime
光合速率
Photosynthesis rate
[μmol/(m2·s)]
蒸腾速率
Transpiration rate
[mmol/(m2·s)]
水分利用效率
Water use efficiency
(mmol CO2/mol H2O)
分蘖成穗率
Productive tillers
(%)
叶片角度
Leaf angle
(°)
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
19.7
7.72
2.55
64.80
21.8
轻干湿交替灌溉
Alternate wetting and moderate soil drying
19.3
5.41*
3.57*
82.30*
17.7*
小麦Wheat
常规灌溉
Conventional irrigatio
24.8
6.63
3.74
43.50
27.3
控制灌溉
Controlled soil drying irrigation
24.2
5.32*
4.55*
55.80*
23.1*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
37.5
5.39
6.96
-
47.5
分区交替灌溉
Root partial and alternate irrigation
36.1
3.68*
9.81*
-
41.3*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
22.9
8.14
2.79
62.20
23.6
轻干湿交替灌溉
Alternate wetting and moderate soil drying
22.3
5.51*
4.05*
80.90*
19.5*
小麦Wheat
常规灌溉
Conventional irrigatio
26.0
6.87
3.78
39.50
28.3
控制灌溉
Controlled soil drying irrigation
25.2
5.46*
4.61*
51.40*
23.7*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
38.1
5.45
6.98
-
48.3
分区交替灌溉
Root partial and alternate irrigation
36.9
3.82*
9.65*
-
43.7*

表5

灌浆期适度干旱对弱势粒中激素平衡、茎中SPS和子粒中SuS活性、物质运转率、收获指数的影响"

地点/作物
Place/ Crop
灌溉方式
Irrigation regime
ABA/
GA3
SPS(%)
Sucrose phosphate synthase activity
SuS[nmol/(mg Pro·min)]
Sucrose synthase activity
平均灌浆速率
[mg/(grain·d)]
Mean grain-filling rate
物质运转率(%)
Matter remobilization
收获指数
Harvest index
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
0.16
65.9
36.4
0.541
61.8
0.466
轻干湿交替灌溉
Alternate wetting and moderate soil drying
0.44*
83.2*
54.5*
0.605*
79.3*
0.514*
小麦Wheat
常规灌溉
Conventional irrigatio
0.41
69.4
41.8
0.831
65.9
0.404
控制灌溉
Controlled soil drying irrigation
0.77*
89.3*
62.7*
0.953*
81.4*
0.442*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
0.45
54.2
30.1
5.856
53.7
0.419
分区交替灌溉
Root partial and alternate irrigation
0.86*
77.2*
53.8*
6.724*
67.2*
0.452*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
0.18
69.1
35.0
0.55
63.2
0.464
轻干湿交替灌溉
Alternate wetting and moderate soil drying
0.46*
86.0*
53.3*
0.62*
78.3*
0.512*
小麦Wheat
常规灌溉
Conventional irrigatio
0.37
68.4
43.2
0.82
67.5
0.408
控制灌溉
Controlled soil drying irrigation
0.75*
91.3*
63.7*
0.93*
83.6*
0.448*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
0.47
52.8
29.5
5.79
54.9
0.425
分区交替灌溉
Root partial and alternate irrigation
0.88*
76.2*
55.2*
6.64*
70.6*
0.460*
[1] Emma M . Water:More crop per drop. Nature, 2008,452(7185):273-277.
doi: 10.1038/452273a pmid: 18354452
[2] Zhou S, Li M, Guan Q , et al. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Science, 2015,236:44-60.
doi: 10.1016/j.plantsci.2015.03.017
[3] Zhu X J, Yu G R, Wang Q F , et al. Spatial variability of water use efficiency in China's terrestrial ecosystems. Global & Planetary Change, 2015,129:37-44.
doi: 10.1016/j.gloplacha.2015.03.003
[4] Devkota K, Hoogenboom G, Boote K , et al. Simulating the impact of water saving irrigation and conservation agriculture practices for rice-wheat systems in the irrigated semi-arid drylands of central Asia. Agricultural and Forest Meteorology, 2015,214:266-280.
[5] Ockerby S, Fuka S . The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research, 2001,69:215-226.
doi: 10.1016/S0378-4290(00)00140-4
[6] Shao G, Deng S, Liu N , et al. Effects of controlled irrigation and drainage on growth,grain yield and water use in paddy rice. European Journal of Agronomy, 2015,53:1-9.
[7] Tao H, Brueck H, Dittert K , et al. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 2006,95:1-12.
doi: 10.1016/j.fcr.2005.01.019
[8] Lampayan R, Rejesus R, Singleton G , et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 2015,170:95-108.
doi: 10.1016/j.fcr.2014.10.013
[9] 王濮, 鲁来清, 王润正 , 等. 河北吴桥小麦—玉米一年两作超高产探索. 中国农业科技导报, 2000,2(3):12-15.
[10] 张盼峰, 汪江涛, 焦念元 , 等. 轮耕与隔畦灌溉对麦玉两熟作物生长和水分利用效率的影响. 作物杂志, 2013(6):118-122.
doi: 10.3969/j.issn.1001-7283.2013.06.030
[11] 胡梦芸, 张正斌, 徐萍 , 等. 亏缺灌溉下小麦水分利用效率与光合产物积累转运的相关研究. 作物学报, 2007,33(11):1884-1891.
doi: 10.3321/j.issn:0496-3490.2007.10.022
[12] 康绍忠, 史文娟, 胡笑涛 , 等. 调亏灌溉对于玉米生理指标及水分利用效率的影响. 农业工程学报, 1998,14(4):82-87.
[13] 买自珍, 蒋儒龄, 袁丕成 , 等. 宁夏中部扬黄灌溉区地膜玉米膜孔灌溉技术研究. 干旱地区农业研究, 2011,29(2):53-58.
[14] 张昊, 郝春雷, 孟繁盛 , 等. 膜下滴灌条件下不同灌水量对玉米产量及土壤水分的影响. 作物杂志, 2016(1):105-109.
[15] 张婷, 吴普特, 赵西宁 , 等. 垄沟灌溉种植对玉米光合特性及产量的影响. 灌溉排水学报, 2013,32(1):96-98.
[16] Yoshida S, Forno D, Cock J , et al. Determination of sugar and starch in plant tissue.In:Yoshida S.ed.Laboratory Manual for Physiological Studies of Rice.The International Rice Research Institute, Philippines, 1976: 46-49.
[17] 朱庆森, 曹显祖, 骆亦其 . 水稻籽粒灌浆的生长分析. 作物学报, 1988,14(3):182-193.
[18] Richards F J . A flexible growth function for empirical use. Journal of Experimental Botany, 1959,10:290-300.
doi: 10.1093/jxb/10.2.290
[19] 陈远平, 杨文钰 . 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定.四川农业大学学报, 2005(23):498-500.
[20] Yang J C, Zhang J H, Wang Z Q , et al. Activities of enzymes involved in source-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003,81:69-81.
doi: 10.1016/S0378-4290(02)00214-9
[21] 高俊凤 . 植物生理学实验指导.北京: 高等教育出版社, 2006: 105-107.
[22] Long S P, Zhu X, Naidu S L , et al. Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 2006,29:315-330.
doi: 10.1111/j.1365-3040.2005.01493.x pmid: 17080588
[23] 赵明, 李从锋, 董志强 . 玉米冠层耕层协调优化及其高产高效技术. 作物杂志, 2015(3):70-75.
doi: 10.16035/j.issn.1001-7283.2015.03.013
[24] Duvick D N . Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 1977,22:187-196.
[25] Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008,108:32-38.
doi: 10.1016/j.fcr.2008.04.001
[26] 王丰, 程方民, 刘奕 , 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化. 作物学报, 2006,32(1):25-29.
[27] 陶龙兴, 王熹, 黄效林 . 内源IAA对杂交稻强、弱势粒灌浆增重的影响. 中国水稻科学, 2003,17(2):149-155.
[28] 王熹, 陶龙兴, 徐仁胜 , 等. 初论杂交稻粒间顶端优势. 作物学报, 2001,27(6):980-985.
doi: 10.3321/j.issn:0496-3490.2001.06.048
[29] 靳德明, 王维金, 蓝盛银 , 等. 重穗型杂交水稻籽粒灌浆过程中强势和弱势颖花内源IAA、ABA和GA水平的动态状况. 植物生理与分子生物学学报, 2002,28(3):215-220.
doi: 10.3321/j.issn:1671-3877.2002.03.010
[30] 谢光辉, 杨建昌, 王志琴 , 等. 水稻籽粒灌浆特性及其与生理活性的关系. 作物学报, 2001,27(5):557-565.
[31] Ober E S, Setter T L, Madison J T , et al. Influence of water deficit on maize endosperm development.Enzyme activities and RNA transcripts of starch and zein synthesis,abscisic acid,and cell division. Plant Physiology, 1991,97:154-164.
doi: 10.1104/pp.97.1.154
[32] Saini H S, Sedgley M, Aspinall D . Developmental anatomy in wheat of male sterility induced by heat stress,water deficit or abscisic acid. Australian Journal of Plant Physiology, 1984,11:243-253.
doi: 10.1071/PP9840243
[33] Waters S P, Martin P, Lee B T . Influence of sucrose and abscisic acid on the determination of grain number in wheat. Journal of Experimental Botany, 1984,35:829-840.
doi: 10.1093/jxb/35.6.829
[34] Andersen M N, Asch F, Wu F , et al. Soluble invertase expression is an early target of drought stress during the critical,abortion-sensitive phase of young overy development in maize. Plant Physiology, 2002,130:591-604.
doi: 10.1104/pp.005637
[35] 黄锦文, 梁康迳, 梁义元 , 等. 不同类型水稻籽粒灌浆过程内源激素含量变化的研究. 中国生态农业学报, 2003,11(2):11-13.
[36] 刘霞, 穆春华, 尹燕枰 , 等. 花后高温、弱光及其双重胁迫对小麦籽粒内源激素含量与增重进程的影响. 作物学报, 2007,33(4):677-681.
doi: 10.3321/j.issn:0496-3490.2007.04.024
[37] 高松洁, 王文静, 夏国军 , 等. 3小麦大粒品种内源CA3及ABA含量的变化规律. 河南农业大学学报, 2000,34(3):213-219.
doi: 10.3969/j.issn.1000-2340.2000.03.004
[38] Yang J C, Zhang J H . Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 2010,61(12):3177-3189.
doi: 10.1364/AO.36.000144 pmid: 20421195
[39] Nakamura Y, Yuki K . Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Science, 1992,82:15-20.
doi: 10.1016/0168-9452(92)90003-5
[1] 赵 鑫 陈少锋 王 慧 刘三才 杨修仕 张宝林. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018, (5): 27–32
[2] 张翔宇 李 海 梁海燕 张 知 宋晓强 郑敏娜. 不同种植行距与种植密度对黍子#br# 生长特性及子实产量的影响[J]. 作物杂志, 2018, (5): 91–96
[3] 吴荣华 庄克章 刘 鹏 张春艳. 鲁南地区夏玉米产量对气象因子的响应[J]. 作物杂志, 2018, (5): 104–109
[4] 宿飞飞 张静华 李 勇 刘尚武 刘振宇 王绍鹏 万书明 陈 曦 高云飞 胡林双 吕典秋. 不同灌溉方式对两个马铃薯品种#br# 生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[5] 张瑞栋 曹 雄 岳忠孝 梁晓红 刘 静 黄敏佳. 氮肥和密度对高粱产量及氮肥利用率的影响[J]. 作物杂志, 2018, (5): 110–115
[6] 安 霞 张海军 蒋方山 吕连杰 陈 军. 播期播量对不同穗型冬小麦群体及子粒产量的影响[J]. 作物杂志, 2018, (5): 132–136
[7] 高文俊 杨国义 高新中 玉 柱 许庆方 原向阳 孙耀武. 氮磷钾肥对青贮玉米产量和品质的影响[J]. 作物杂志, 2018, (5): 144–149
[8] 王小林 纪晓玲 张盼盼 张 雄 张 静. 黄土高原旱地谷子品种地上器官#br# 干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[9] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7
[10] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102–105
[11] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106–113
[12] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[13] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126–130
[14] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138–142
[15] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143–148
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .