作物杂志,2016, 第2期: 4349 doi: 10.16035/j.issn.1001-7283.2016.02.008
国博闻,赵雪,魏小双,韩艳婧,梁强飞,宋波,刘珊珊
Guo Bowen,Zhao Xue,Wei Xiaoshuang,Han Yanjing,Liang Qiangfei,Song Bo,Liu Shanshan
摘要:
利用我国高油大豆品种东农47与日本引进多亚基缺失型育种材料日B,采用回交、三交的育种方法,综合系谱选择,通过SDS-PAGE技术分析亚基组成,在BC1、BC3及三交种F8群体内,选育到(α+11S groupⅡa)-缺失型、(α′+11S groupⅡa)-缺失型、[(α′+α)+11S groupⅡa、Ⅱb]-缺失型、[(α′+α)+11S groupⅡa]-缺失型、[(α′+α)+11S groupⅡb+X1X2]-缺失型、[(α′+α)+11S groupⅡb]-缺失型和(α′+11S groupⅠ、Ⅱa)-缺失型共7种具有中国大豆遗传背景的7S球蛋白α′、α亚基与11S球蛋白groupⅠ(A1aB1b,A2B1a,A1bB2)、groupⅡa(A4A5B3)和groupⅡb(A3B4)不同亚基缺失组合新种质。测定优良品系的综合农艺性状及氨基酸组成、含量,结果表明,与对照相比,各种缺失突变体的各种氨基酸组分含量普遍提高,蛋白总量普遍高于轮回亲本,精氨酸含量特别是游离精氨酸的含量大幅提高。其中亚基组成为(α+11S groupⅡa)-缺失型品系G2-2-3的17种氨基酸含量、氨基酸总量、蛋氨酸含量均显著高于轮回亲本东农47,特别是游离精氨酸含量高出7.27mg/g。以上结果表明,7S与11S多亚基缺失型优良品系在有效去除致敏蛋白的同时,可以提高大豆蛋白氨基酸含量, 改善大豆蛋白氨基酸组分配比。各种致敏蛋白缺失型大豆优良新品系的获得,大大丰富了我国蛋白质组分改良育种的种质基础。
[1] | Koshiyama I . Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chemistry, 1968,45:394-404. |
[2] |
Utsumi S, Kinsella J E . Forces involved in soy protein gelation: effects of various reagents on the formation,hardness and solubility of heat-induced gels made from 7S,11S and soy isolate. Journal of Food Science, 1985,50:1278-1282.
doi: 10.1111/jfds.1985.50.issue-5 |
[3] | Salleh M R B, Maruyama N, Takahashi K , et al. Gelling properties of soybean beta-conglycinin having different subunits compositions.Bioscience,Biotechnology, and Biochemistry, 2004,68:1091-1096. |
[4] | Aoyama T, Kohno M, Saito T , et al. Reduction by phytate-reduced soybean beta-conglycinin of plasma triglyceride level of young and adult rat.Bioscience,Biotechnology, and Biochemistry, 2001,65:1071-1075. |
[5] |
Manzoni C, Lovati M R, Ggianazza E , et al. Soybean protein products as regulators of liver low-density lipoproteinreceptors Ⅱ.a α′ rich commercial soy concentrate and a deficient mutant differently affect low-density lipoproteinreceptor activation. Journal of Agricultural and Food Chemistry, 1998,46:2481-2484.
doi: 10.1021/jf980100c |
[6] | Sirtori C R, Lovati M R, Manzoni C , et al. Soy and cholesterol reduction clinical experience. Journal of Nutrition, 1995,125:598-605. |
[7] |
Schuler M A, Schmitt E S, Beachy R N . Closely related families of genes code for the α and α′ subunits of the soybean 7S storage protein complex. Nucleic Acids Research, 1982,10:8225-8243.
doi: 10.1093/nar/10.24.8225 |
[8] |
Sebastiani F L, Farrell L B, Schuler M A , et al. Complete sequence of a cDNA of α subunit of soybean β-conglycinin. Plant Molecular Biology, 1990,15:197-201.
doi: 10.1007/BF00017745 |
[9] |
Tierney M L, Bray E A, Allen R D , et al. Isolation and characterization of a genomic clone encoding the β-subunit of β-conglycinin. Planta, 1987,172:356-363.
doi: 10.1007/BF00398664 |
[10] |
Than V H, Shibasaki K . Beta-conglycinin from soybean proteins.Isolation and immunological and physicochemical properties of the monomeric forms. Biochimica et Biophysica Acta, 1977,490:370-384.
doi: 10.1016/0005-2795(77)90012-5 |
[11] | Staswick P E, Hermodson M A, Nielsen N C . Identification of the acidic and basic subunit complexes of glycinin. Biological Chemistry, 1981,256:8752-8755. |
[12] | Kaviani B, Kharabian A . Improvement of the nutritional value of soybean [Glycine max (L.) Merr.]seed with alteration in protein subunit of glycinin (11S globulin) and beta-conglycinin (7S globulin). Turkish Journal of Biology, 2008,32:91-97. |
[13] |
Tsukada Y, Kitamura K, Harada K , et al. Genetic analysis of subunits of two major storage protein (β-conglycinin and glycinin) in soybean seeds. Japanse Journal of Breed, 1986,36:390-400.
doi: 10.1270/jsbbs1951.36.390 |
[14] | Vaintraub I A, Shutov A D . Moleeular weight of subunits of soybean 11S proteins. Biokhimiia, 1971,36(5):1086-1088. |
[15] |
Adachi M, Takenaka Y, Gidamis A B . Crystal structure of soybean proglycinin AlaBlb homotrimer. Journal of Molecular Biology, 2001,305:291-305.
doi: 10.1006/jmbi.2000.4310 |
[16] |
Adachi M, Kanalnori J, Masuda T . Crystal structure of soybean 11S globulin:glycinin A3B4 homohexamer. Proceedings of the National Academy of Science of the United States of America, 2003,100:7395-7400.
doi: 10.1073/pnas.0832158100 |
[17] | Staswick P E, Hermodson M A, Nilsen N C . Identification of the cystines which link the acidic and basic components of the glycinin subunits. Biological Chemistry, 1984,259:13431-13435. |
[18] | Ygasaki K, Kaizuma N, Kltamura K . Inheritance of glyeinin subunits and characterization of glyinin molecules lacking the subunits in soybean [Glyeine max(L.)Merr.]. Breeding Science, 1996,46:11-15. |
[19] |
Nielsen N C, Diekinson C D, Cho T J . Characterization of the glycinin gene family in soybean. Plant Cell, 1989,1:313-328.
doi: 10.1105/tpc.1.3.313 |
[20] |
Fukushina D . Recent progress of soybean protein foods. Food Reviews International, 1991,7:323-335.
doi: 10.1080/87559129109540915 |
[21] |
Yamaauchi F . Molecular understanding of soybean protein. Food Reviews International, 1991,7:283-332.
doi: 10.1080/87559129109540914 |
[22] |
Takahashi M, Uematsu Y, Kashiwaba K , et al. Accumulations of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3 |
[23] | Jennings A C, Morton R K . Amino acids and protein synthesis in developing wheat endosperm. Australia Journal of Boil Science, 1963,16:384-394. |
[24] |
Mertz E T, Bates L S, Nelson O E . Mutant gene that changes protein composition and increased lysine content of maize endosperm. Scinence, 1964,145:279-280.
doi: 10.1126/science.145.3629.279 |
[25] | Misra P S, Mertz E T, Glover D V . Studies on corn proteins:Ⅷ.Free amino acid content of opaque-2 and double mutants. Cereal Chemistry, 1975,52:844-848. |
[26] | Mauri I, Maddaloni M, Lohmer S , et al. Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yease. Molecular and General Genetics, 1993,241:319-326. |
[27] | Or E, Boyer S K, Larkins B A . Opaque2 modifies act post-transcriptionally and in a polar manner on gamma-zein gene expression in maize endosperm. Plant cell, 1993,5:1599-1609. |
[28] |
Gillikin J W, Zhang F, Coleman C E , et al. A defective sign peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiology, 1997,114, 345-352.
doi: 10.1104/pp.114.1.345 |
[29] |
Coleman C E, Lopes M A, Gillikin J W , et al. A defective signal peptide in the maize high-lysine mutant floury-2. Proceedings of National Academy Sciences USA, 1995,92:6828-6831.
doi: 10.1073/pnas.92.15.6828 |
[30] | Mertz E T. Thirty years of opaque2 maize. In BA Larkins,ET Mertz,eds,Quality protein Maize 1964-1994.Purdue University Press,West Lafayette, 1997: 25-37. |
[31] |
Kim C S, Gibbon B C, Gillikin J W , et al. The maize mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant Journal, 2006,48:440-451.
doi: 10.1111/tpj.2006.48.issue-3 |
[32] | Geevers H O, Lake J K . Development of modified opaque2 maize in South Africa. American Association of Cereal Chemists, 1992: 49-78. |
[33] | Glover D V . Corn protein-genetics,breeding,and value in foods and feeds. American Association of Cereal Chemists, 1992: 49-78. |
[34] | Harada K, Hayashi M, Tsubokura Y . Genetic variation of globulin composition in soybean seeds. Agriculture Research Updates, 2013,5:101-116. |
[35] |
Cantón F R, Suáez M F, Cánovas F M . Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research, 2005,83:265-278.
doi: 10.1007/s11120-004-9366-9 |
[36] |
Cheng L, Ma F, Ranwala D . Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree Physiology, 2004,24:91-98.
doi: 10.1093/treephys/24.1.91 |
[1] | 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114120 |
[2] | 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 4450 |
[3] | 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152155 |
[4] | 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156159 |
[5] | 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 3744 |
[6] | 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 15 |
[7] | 周学超,丁素荣,魏云山,周艳芳,魏学,娜日娜,李峰. 不同鲜食大豆品种(系)在赤峰地区的适应性评价[J]. 作物杂志, 2017, (3): 4448 |
[8] | 任国勇,李伟,张礼凤,王彩洁,戴海英,王金龙,徐冉,张彦威. 转HarpinXooc蛋白编码基因hrf2大豆的胞囊线虫病1号小种抗性鉴定[J]. 作物杂志, 2017, (3): 4953 |
[9] | 张旭丽,邢宝龙,王桂梅,殷丽丽. 密度对晋北区大豆农艺性状、经济性状及产量的影响[J]. 作物杂志, 2017, (3): 127131 |
[10] | 张喜亭,曹立为,吕书财,陈国兴,王永吉,于舒函,龚振平. 黑土容重对大豆氮素吸收及产量的影响[J]. 作物杂志, 2017, (3): 132137 |
[11] | 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121125 |
[12] | 闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨. 大豆GmWRI1a基因启动子克隆及序列分析[J]. 作物杂志, 2017, (2): 5158 |
[13] | 鲁萍,金成功,张茜,姜佰文,闫南南,肖同玉,白雅梅,李景欣,陈睿,李静. 反枝苋和大豆对降雨季节波动的生理生态响应[J]. 作物杂志, 2017, (2): 114120 |
[14] | 高宇,刘延超,史树森,崔娟,熊晋峰. 我国大豆田蓟马研究现状[J]. 作物杂志, 2017, (1): 813 |
[15] | 李海燕,蔡德利,陈井生,段玉玺,陈立杰,商莹宇. 大豆抗感资源对大豆胞囊线虫3号生理小种生长发育动态的影响[J]. 作物杂志, 2017, (1): 144149 |
|