作物杂志,2016, 第4期: 26–35 doi: 10.16035/j.issn.1001-7283.2016.04.005

• 专题综述 • 上一篇    下一篇

作物抗冷性及其化学控制机理研究进展

秦东玲,李钊,尉菊萍,杨文一,白冰,刘宇龙,张倩,杨德光   

  1. 东北农业大学农学院,150030,黑龙江哈尔滨
  • 收稿日期:2016-04-21 修回日期:2016-05-20 出版日期:2016-08-15 发布日期:2018-08-26
  • 通讯作者: 张倩,杨德光
  • 作者简介:作者简介:秦东玲,硕士研究生,研究方向为作物逆境生理
  • 基金资助:
    中国博士后科学基金(2015M571383);黑龙江省博士后资助(LBH-Z14028);农业科研杰出人才及创新团队项目(2015)

Progress on Cold Resistance and Chemical Control Mechanism of Crops

Qin Dongling,Li Zhao,Yu Juping,Yang Wenyi,Bai Bing,Liu Yulong,Zhang Qian,Yang Deguang   

  1. College of Agronomy, Northeast Agricultural University,Harbin 150030,Heilongjiang,China
  • Received:2016-04-21 Revised:2016-05-20 Online:2016-08-15 Published:2018-08-26
  • Contact: Qian Zhang,Deguang Yang

摘要:

冷胁迫是影响作物生长发育的重要因子之一,为适应和抵御低温逆境,作物发生了一系列复杂的形态、生理及分子水平的变化。植物生长调节剂在解决低温冷害方面发挥着重要作用,合理使用植物生长调节剂是解决低温冷害的有效途径之一。国内外学者在提高作物抗冷性方面对抗冷性鉴定分级、生理和代谢变化、抗冷基因的筛选、蛋白质组学调控机制以及化控机理均有研究。综述了在冷胁迫条件下作物的形态结构、生理代谢、基因挖掘、产量形成及植物生长调节剂对其缓解调控的研究进展,对作物抗冷栽培和解决抗冷性问题有着重要的实践意义,同时为作物生产合理施用化控剂和进行科学的化学控制研究提供理论指导。

关键词: 作物, 生理生化, 分子机制, 抗冷性, 化控技术

Abstract:

Cold stress is one of the most important limited factors that affect the growth and development of crops. A series of complex morphological, physiological and molecular changes have been made in order to adapt and resist the low temperature stress. Plant growth regulators play an important role in solving the cold damage, which is one of the effective ways to solve cold damage. Domestic and foreign scholars have studied the identification and classification of cold resistance, physiological and metabolic changes, the screening of cold resistance genes, and the mechanism of protein and chemical control. In this paper, the progress on the morphological structure, physiological metabolism, gene mining, yield formation and the regulation effects of plant growth regulators are reviewed. It will be of great practical significance to resist cold cultivation and cold resistance, and provide theoretical guidance for the reasonable application of chemical control agent and chemical control of crop production.

Key words: Crops, Physiological-biochemical, Molecular mechanism, Cold resistance, Chemical control technology

表1

作物抗冷基因功能及转基因植物表型"

基因
Genes
基因功能Gene function 转基因作物
Transgenic crops
转基因植株表型Transgenic plants genotype 参考文献
References
TERF2 转录因子 水稻 促进渗透调节物质和叶绿素的合成,减少活性氧的产生 [28]
Osmyb4 R2R3型转录因子 水稻 提高细胞抗氧化能力 [2]
OsMYB2 R2R3型转录因子 水稻 提高冷胁迫相关基因、抗氧化酶和脯氨酸合成基因的表达 [3]
LsICE1 bHLH类转录因子 水稻 增强冷胁迫的耐性 [29]
OsWRKY71 WRKY转录因子 水稻 通过调节下游靶基因调控植株抗冷性 [33]
ROC1 调节蛋白 水稻 通过激活DREB1B/CBF1调控水稻抗冷性 [37]
CaPUB1 辣椒U-box E3泛素连接酶 水稻 增强植株对冷胁迫的耐受性和降低对干旱胁迫的耐受性 [38]
OsRAN1
小G蛋白
水稻
通过增加渗透调节物质脯氨酸和可溶性糖含量水平提高植株抗冷能力 [32]
OsWRKY76
WRKY类转录因子
水稻
提高抗氧化相关酶及脂质转运蛋白基因的表达,保护质膜稳定性 [39]
OsiSAP1/OsiSAP8
A20/AN1型ZFP类转录因子
烟草、水稻
提高冷胁迫下种子的发芽能力,促进幼苗对低温等非生物逆境胁迫的抗性 [40-41]
JERF3 ERF类转录因子 烟草 减少活性氧积累,提高对干旱、高盐及冷胁迫的抗性 [42]
LeLUT1 番茄类胡萝卜素ε-羟化酶基因 烟草 缓解光抑制和光氧化,保护光合器官 [30]
GhCAX3 蛋白基因 烟草 调控冷胁迫和ABA诱导的信号转导途径 [43]
ZmMPK17 蛋白激酶 烟草 提高发芽率、脯氨酸和可溶性糖含量,影响抗氧化酶系统 [44]
PtrbHLH bHLH类转录因子 烟草 转基因株系存活率高,抗冷能力强 [45]
GO 真菌葡萄糖氧化酶 烟草 提高抗氧化防御系统活性 [46]
TERF2/LeERF2 ERF类转录因子 番茄、烟草 促进乙烯的生物合成、调节乙烯信号途径 [47]
CBF1 冷诱导转录因子 番茄 提高植株对低温和氧化胁迫的耐受性 [36]
GsZFP1 C2H2型ZFP类转录因子 野生大豆 调控植株对低温和干旱的耐性 [34]
Fe-SOD 抗氧化酶基因 玉米 提高作物抗氧化酶活性 [35]
ZmCPK1 钙依赖蛋白激酶 玉米 提高植株抗冷性 [48]
TaCBF14/TaCBF15
CBF类转录因子
冬小麦
缓解低温对细胞膜的伤害,提高低温后植株的存活率和PSⅡ活性 [49]
LcFIN1
冷诱导转录因子
作物
通过调控存活率、鲜重和与胁迫相关的其他指标来影响植株抗冷性 [50]

图1

冷胁迫基因表达中顺式作用元件和ABA依赖性转录因子的转录调控网络"

[1] Chen Y, Jiang J F, Chang Q S , et al. Cold acclimation induces freezing tolerance via antioxidative enzymes,proline metabolism and gene expression changes in two chrysanthemum species. Molecular Biology Reports, 2014,41(2):815-822.
doi: 10.1007/s11033-013-2921-8
[2] Park M R, Yun K Y, Mohanty B , et al. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell & Environment, 2010,33(12):2209-2230.
[3] Yang A, Dai X, Zhang W H . A R2R3-type MYB gene,OsMYB2,is involved in salt,cold,and dehydration tolerance in rice. Journal of Experimental Botany, 2012,63(7):2541-2556.
doi: 10.1093/jxb/err431
[4] 段留生 . 作物化学控制原理与技术.北京: 中国农业大学出版社, 2011.
[5] 徐呈祥 .提高植物抗寒性的机理研究进展. 生态学报, 2012,32(24):7966-7980.
doi: 10.5846/stxb201106260945
[6] Dumlao M R, Darehshouri A, Cohu C M , et al. Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynthesis Research, 2012,113(1/2/3):181-189.
doi: 10.1007/s11120-012-9762-5
[7] 何小勇, 柳新红, 袁德义 , 等. 不同种源翅荚木的抗寒性. 林业科学, 2007,43(4):24-30.
doi: 10.11707/j.1001-7488.20070404
[8] 孙三杰, 李建明, 宗建伟 , 等. 亚低温与干旱胁迫对番茄幼苗根系形态及叶片结构的影响. 应用生态学报, 2012,23(11):3027-3032.
[9] Sebastian N, Erika H, Christian K . Critically low soil temperatures for root growth and root morphology in three alpine plant species. Alpine Botany, 2016,126:1-11.
doi: 10.1007/s00035-015-0160-4
[10] Wang L, Li S . Salicylic acid-induced heat or cold tolerance in relation to Ca 2+ homeostasis and antioxidant systems in young grape plants . Plant Science, 2006,170(4):685-694.
doi: 10.1016/j.plantsci.2005.09.005
[11] Prášil I T, Prášilová P, Mařík P . Comparative study of direct and indirect evaluations of frost tolerance in barley. Field Crops Research, 2007,102(1):1-8.
doi: 10.1016/j.fcr.2006.12.012
[12] 李品明, 孙玉芳, 杨丙贤 , 等. 低温胁迫对黄连膜脂过氧化作用和抗氧化酶活性的影响. 中国农学通报, 2011,27(15):117-120.
[13] Farooq M, Aziz T, Wahid A , et al. Chilling tolerance in maize:agronomic and physiological approaches. Crop & Pasture Science, 2009,60(6):501-516.
[14] Ploschuk E L, Bado L A, Salinas M , et al. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environmental and Experimental Botany, 2014,102:18-26.
doi: 10.1016/j.envexpbot.2014.02.005
[15] Nguyen H T, Leipner J, Stamp P , et al. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 2009,47:116-122.
doi: 10.1016/j.plaphy.2008.10.010
[16] Aroca R, Tognoni F, Irigoyen J J , et al. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiology and Biochemistry, 2001,39(12):1067-1073.
doi: 10.1016/S0981-9428(01)01335-3
[17] Pouramirdashtmian F, Khajehhosseini M, Esfahani M . Improving chilling tolerance of rice seedling by seed priming with salicylic acid. Archives of Agronomy & Soil Science, 2014,60(9):1291-1302.
[18] Patton A J, Cunningham S M, Volenec J J , et al. Differences in freeze tolerance of zoysiagrasses:II.carbohydrate and proline accumulation. Crop Science, 2007,47(5):2170-2181.
doi: 10.2135/cropsci2006.12.0784
[19] Umezawa T, Nakashima K, Miyakawa T , et al. Molecular basis of the core regulatory network in ABA responses:sensing,signaling and transport. Plant and Cell Physiology, 2010,51(11):1821-1839.
doi: 10.1093/pcp/pcq156
[20] Zhou B, Guo Z, Liu Z . Effects of abscisic acid on antioxidant systems of (Aublet) Sw.under chilling stress. Crop Science, 2005,45(2):599-605.
doi: 10.2135/cropsci2005.0599
[21] Singh I, Kumar U, Singh S K , et al. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants, 2012,18(3):229-236.
doi: 10.1007/s12298-012-0122-x
[22] Ramalho J C, Quartin V L, Leitao L , et al. Cold acclimation ability and photosynthesis among species of the tropical Coffee genus. Plant Biology, 2003,5:631-641.
doi: 10.1055/s-2003-44688
[23] Aroca R, Vernieri P, Irigoyen J J , et al. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Science, 2003,165(3):671-679.
doi: 10.1016/S0168-9452(03)00257-7
[24] Foyer C H, Vanacker H, Gomez L D , et al. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures:review. Plant Physiology and Biochemistry, 2002,40:659-668.
doi: 10.1016/S0981-9428(02)01425-0
[25] 孙耀锋, 高会杰, 王少杰 , 等. 倒春寒对小麦的危害及防御措施. 种业导刊, 2010 ( 5):42-42.
[26] 徐冲, 王丕武, 侯立刚 , 等. 分蘖期低温胁迫对东北水稻主栽品种产量及光合特性的影响. 吉林农业科学, 2015,40(1):10-16.
[27] Ensminger I, Busch F, Huner N . Photostasis and cold acclimation:sensing low temperature through photosynthesis. Physiologia Plantarum, 2006,126(1):28-44.
doi: 10.1111/ppl.2006.126.issue-1
[28] Yun T, Zhang H, Pan X , et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Research, 2011,20(4):857-866.
doi: 10.1007/s11248-010-9463-9
[29] Xiang D J . Cloning and characteristic analysis of cold stress transcription factor lsice1 from lettuce and transformation into rice. Meteoritics & Planetary Science, 2001,36(9):1237-1248.
[30] Zhou B, Deng Y S, Kong F Y , et al. Overexpression of a tomato carotenoid ɛ-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco. Plant Physiology and Biochemistry, 2013,70:235-245.
doi: 10.1016/j.plaphy.2013.05.035
[31] Tan H, Huang H, Tie M , et al. Transcriptome profiling of two Asparagus Bean (Vigna unguiculata subsp.sesquipedalis) cultivars differing in chilling tolerance under cold stress. PloS One, 2016,11(3):e0151105.
doi: 10.1371/journal.pone.0151105
[32] Xu P, Cai W . RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). Journal of Experimental Botany, 2014,65(12):3277-3287.
doi: 10.1093/jxb/eru178
[33] Kim C Y , Vo K T X,Nguyen C D,et al.Functional analysis of a cold-responsive rice WRKY gene,OsWRKY71. Plant Biotechnology Reports, 2016,10(1):13-23.
doi: 10.1007/s11816-015-0383-2
[34] Luo X, Bai X, Zhu D , et al. GsZFP1,a new Cys2/His2-type zinc-finger protein,is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012,235(6):1141-1155.
doi: 10.1007/s00425-011-1563-0
[35] McKersie B D, Murnaghan J, Jones K S , et al. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiology, 2000,122(4):1427-1438.
doi: 10.1104/pp.122.4.1427
[36] Hsieh T H, Lee J T, Yang P T , et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 2002,129(3):1086-1094.
doi: 10.1104/pp.003442
[37] Dou M, Cheng S, Zhao B , et al. The indeterminate domain protein ROC1 regulates chilling tolerance via activation of DREB1B/CBF1 in rice. International Journal of Molecular Sciences, 2016,17(3):233.
doi: 10.3390/ijms17030233
[38] Min H J, Jung Y J, Kang B G , et al. CaPUB1,a hot pepper U-box E3 ubiquitin ligase,confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice (Oryza sativa L.). Molecules and Cells, 2015,39(3):250-257.
[39] Yokotani N, Sato Y, Tanabe S , et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. Journal of Experimental Botany, 2013,64(16):5085-5097.
doi: 10.1093/jxb/ert298
[40] Mukhopadhyay A, Vij S, Tyagi A K . Overexpression of a zinc-finger protein gene from rice confers tolerance to cold,dehydration,and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(16):6309-6314.
doi: 10.1073/pnas.0401572101
[41] Kanneganti V, Gupta A K . Overexpression of OsiSAP8,a member of stress associated protein (SAP) gene family of rice confers tolerance to salt,drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 2008,66(5):445-462.
doi: 10.1007/s11103-007-9284-2
[42] Wu L, Zhang Z, Zhang H , et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt,drought,and freezing. Plant Physiology, 2008,148(4):1953-1963.
doi: 10.1104/pp.108.126813
[43] Xu L, Zahid K R, He L , et al. GhCAX3 gene,a novel Ca 2+/H + exchanger from cotton,confers regulation of cold response and ABA induced signal transduction . PloS One, 2013,8(6):e66303.
doi: 10.1371/journal.pone.0066303
[44] Pan J, Zhang M, Kong X , et al. ZmMPK17,a novel maize group D MAP kinase gene,is involved in multiple stress responses. Planta, 2012,235(4):661-676.
doi: 10.1007/s00425-011-1510-0
[45] Huang X S, Wang W, Zhang Q , et al. A basic helix-loop-helix transcription factor,PtrbHLH,of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 2013,162(2):1178-1194.
doi: 10.1104/pp.112.210740
[46] Maruthasalam S, Liu Y L, Sun C M , et al. Constitutive expression of a fungal glucose oxidase gene in transgenic tobacco confers chilling tolerance through the activation of antioxidative defence system. Plant Cell Reports, 2010,29(9):1035-1048.
doi: 10.1007/s00299-010-0889-6
[47] Zhang Z, Huang R . Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology, 2010,73(3):241-249.
doi: 10.1007/s11103-010-9609-4
[48] Weckwerth P, Ehlert B, Romeis T . ZmCPK1,a calcium‐independent kinase member of the Zea mays CDPK gene family,functions as a negative regulator in cold stress signalling.Plant, Cell & Environment, 2015,38(3):544-558.
[49] Soltész A, Smedley M, Vashegyi I , et al. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of Experimental Botany, 2013,64(7):1849-1862.
doi: 10.1093/jxb/ert050
[50] Gao Q, Li X, Jia J , et al. Overexpression of a novel cold‐responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants. Plant Biotechnology Journal, 2015,14(3):861-874.
[51] Venzhik Y, Talanova V, Titov A . The effect of abscisic acid on cold tolerance and chloroplasts ultrastructure in wheat under optimal and cold stress conditions. Acta Physiologiae Plantarum, 2016,38(3):1-10.
doi: 10.1007/s11738-015-2023-4
[52] Robertson A J, Ishikawa M, Gusta L V , et al. Abscisic acid-induced heat tolerance in Bromus incnnis Lcyss cell-suspension cultures:Heat-stable,abscisic acid- responsive polypeptides in combination with sucrose confer,enhanced themostability. Plant Physiology, 1994,105:181-190.
doi: 10.1104/pp.105.1.181
[53] Gilmour S J, Zarka D G, Stockinger E J , et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 1998,16(4):433-442.
doi: 10.1046/j.1365-313x.1998.00310.x
[54] Shinozaki K, Yamaguchi-Shinozaki K, Seki M . Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 2003,6(5):410-417.
doi: 10.1016/S1369-5266(03)00092-X
[55] Guo-Tao H, Shi-Liang M, Li-Ping B , et al. Signal transduction during cold,salt,and drought stresses in plants. Molecular Biology Reports, 2012,39(2):969-987.
doi: 10.1007/s11033-011-0823-1
[56] Lin K H, Pai F H, Hwang S Y , et al. Pre-treating paclobutrazol enhanced chilling tolerance of sweetpotato. Plant Growth Regulation, 2006,49(2):249-262.
doi: 10.1007/s10725-006-9135-1
[57] Saleh A A H . Amelioration of chilling injuries in mung bean (Vigna radiata L.) seedlings by paclobutrazol,abscisic acid and hydrogen peroxide. American Journal of Plant Physiology, 2007,2(6):318-332.
doi: 10.3923/ajpp.2007.318.332
[58] 徐秋曼, 陈宏 . 多效唑提高水稻幼苗抗低温能力的机理初探. 西北植物学报, 2002,22(5):1236-1241.
[59] Ginzberg I, Fogelman E, Rosenthal L , et al. Maintenance of high epidermal cell density and reduced calyx-end cracking in developing ‘Pink Lady’ apples treated with a combination of cytokinin 6-benzyladenine and gibberellins A4+A7. Scientia Horticulturae, 2014,165:324-330.
doi: 10.1016/j.scienta.2013.11.020
[60] 王兴, 徐琛, 苍晶, 等 .外源 6-BA 对小麦种子萌发及越冬期植株冻害的缓解作用. 麦类作物学报, 2013,33(2):357-363.
doi: 10.7606/j.issn.1009-1041.2013.02.025
[61] 汪强, 黄正来, 张文静 , 等. 新美洲星和 6-BA 对低温胁迫下稻茬小麦光合和产量的影响. 麦类作物学报, 2015,35(9):1269-1274.
[62] Fariduddin Q, Yusuf M, Chalkoo S , et al. 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L.through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 2011,49(1):55-64.
doi: 10.1007/s11099-011-0022-2
[63] Divi U, Krishna P . Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology, 2009,26(4):131-136.
doi: 10.1016/j.nbt.2009.07.006
[64] 李杰, 杨萍, 颉建明 , 等. 2,4-表油菜素内酯对低温胁迫下辣椒幼苗根系生长及抗氧化酶系统的影响. 核农学报, 2015,29(5):1001-1008.
doi: 10.11869/j.issn.100-8551.2015.05.1001
[65] Khan T A, Fariduddin Q, Yusuf M . Lycopersicon esculentum under low temperature stress:an approach toward enhanced antioxidants and yield. Environmental Science and Pollution Research, 2015,22(18):14178-14188.
doi: 10.1007/s11356-015-4658-5
[66] Park E J, Jeknic Z, Chen T H . Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant & Cell Physiology, 2006,47(6):706-714.
[67] Karabudak T, Bor M, Özdemir F , et al. Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase and lipoxygenase gene expression. Molecular Biology Reports, 2014,41(3):1401-1410.
doi: 10.1007/s11033-013-2984-6
[68] Wang Z, Chen L, Yang H , et al. Effect of exogenous glycine betaine on qualities of button mushrooms (Agaricus bisporus) during postharvest storage. European Food Research & Technology, 2014,240(1):41-48.
[69] Farooq M, Aziz T, Hussain M , et al. Glycinebetaine improves chilling tolerance in hybrid maize. Journal of Agronomy & Crop Science, 2008,194(2):152-160.
[70] Farooq M, Aziz T , Basra S M A,et al.Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agronomy and Crop Science, 2008,194(2):161-168.
doi: 10.1111/j.1439-037X.2008.00300.x
[71] Miura K, Tada Y . Regulation of water,salinity,and cold stress responses by salicylic acid. Frontiers in Plant Science, 2014,5(2):4.
[72] Klára K, Iija T P, Pavel V , et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance,winter Samanta and spring Sandra. Journal of Plant Physiology, 2012,169(6):567-576.
doi: 10.1016/j.jplph.2011.12.013
[73] Fung R W M, Wang C Y, Smith D L , et al. MeSA and MeJA increase steady-state transcript levels of alternative oxidase and resistance against chilling injury in sweet peppers (Capsicum annuum L). Plant Science, 2004,166(3):711-719.
doi: 10.1016/j.plantsci.2003.11.009
[74] Korkmaz A . Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. Hortscience A Publication of the American Society for Horticultural Science, 2005,40(1):197-200.
[75] Fu Z Q, Yan S P, Saleh A , et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012,486(7402):228-232.
doi: 10.1038/nature11162
[76] Scott I M, Clarke S M, Wood J E , et al. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 2004,135(2):1040-1049.
doi: 10.1104/pp.104.041293
[77] Miura K, Ohta M . SIZ1,a small ubiquitin-related modifier ligase,controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology, 2010,167(7):555-560.
doi: 10.1016/j.jplph.2009.11.003
[78] Tsutsui T, Kato W, Asada Y , et al. DEAR1,a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009,122(6):633-643.
doi: 10.1007/s10265-009-0252-6
[79] Qiu D, Xiao J, Xie W , et al. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13,a positive regulator of disease resistance. Molecular Plant, 2008,1(3):538-551.
[80] Wasternack C . Action of jasmonates in plant stress responses and development-applied aspects. Biotechnology Advances, 2014,32(1):31-39.
doi: 10.1016/j.biotechadv.2013.09.009
[81] Dar T A, Uddin M , Khan M M A,et al.Jasmonates counter plant stress:a review. Environmental and Experimental Botany, 2015,115:49-57.
doi: 10.1016/j.envexpbot.2015.02.010
[82] Wasternack C, Hause B . Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development. Annals of Botany, 2013,111(6):1021-1058.
doi: 10.1093/aob/mct067
[83] Kim O T, Bang K H, Shin Y S , et al. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Reports, 2007,26(11):1941-1949.
doi: 10.1007/s00299-007-0400-1
[84] Watanabe K, Tanaka T, Hotta Y , et al. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation, 2000,32(1):97-101.
doi: 10.1023/A:1006369404273
[85] Balestrasse K B, Tomaro M L, Batlle A , et al. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010,71(17):2038-2045.
doi: 10.1016/j.phytochem.2010.07.012
[86] Guo X, Li Y, Yu X . Promotive effects of 5-aminolevulinic acid on photosynthesis and chlorophyll fluorescence of tomato seedlings under suboptimal low temperature and suboptimal photon flux density stress-Short communication. Horticultural Science, 2012,39(2):97-99.
[87] Korkmaz A, Korkmaz Y, Demirkıran A R . Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental and Experimental Botany, 2010,67(3):495-501.
doi: 10.1016/j.envexpbot.2009.07.009
[88] 李烨, 谢立波, 陈永琴 , 等.外源氯化钙和脱落酸处理对茄子低温胁迫相关指标的影响.北方园艺,2012(7):22-25.
[89] Sharma P, Deswal R . Detection and characterization of calcineurin-like activity in Brassica juncea and its activation by low temperature. Plant Physiology & Biochemistry, 2004,42(42):579-584.
[90] Oosterhuis D M, Loka D A, Raper T B . Potassium and stress alleviation:Physiological functions and management of cotton. Journal of Plant Nutrition & Soil Science, 2013,176(3):331-343.
[91] 邹国元, 杨志福, 李晓林 . 钾对玉米苗期抗冷性的影响. 植物营养与肥料学报, 1998,4(2):165-169.
doi: 10.11674/zwyf.1998.0210
[92] 李涛, 于贤昌 . 营养液Cu 2+,Zn 2+和Mn 2+浓度对低温胁迫下黄瓜幼苗叶片SOD活性的影响 . 中国农业科学, 2008,41(3):772-778.
[93] Xu J, Yang J, Duan X , et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biology, 2014,14(1):1-14.
doi: 10.1186/1471-2229-14-1
[94] Panhwar Q A, Naher U A, Radziah O , et al. Quality and antioxidant activity of rice grown on alluvial soil amended with Zn,Cu and Mo. South African Journal of Botany, 2015,98:77-83.
doi: 10.1016/j.sajb.2015.01.021
[95] Rehman A, Farooq M, Nawaz A , et al. Improving the performance of short-duration basmati rice in water-saving production systems by boron nutrition. Annals of Applied Biology, 2015,168(1):19-28.
[96] Nie Z, Li S, Hu C , et al. Effects of molybdenum and phosphorus fertilizers on cold resistance in winter wheat. Journal of Plant Nutrition, 2015,38(5):808-820.
doi: 10.1080/01904167.2014.939289
[97] Subudhi P K, Raut R N . White rust resistance and its association with parental species type and leaf waxiness in Brassica juncea L.Czern & Coss×Brassica napus L.crosses under the action of EDTA and gamma-ray. Euphytica, 1993,74(1/2):1-7.
[1] 吴 昊, 李燕敏 谢传晓. 作物耐热生理基础与基因发掘研究进展[J]. 作物杂志, 2018, (5): 1–9
[2] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7
[3] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13–19
[4] 张凯伦,陈寿明,殷红,李斌,谢良文,贺帆. 外源一氧化氮对盐胁迫下烟草幼苗生理及抗氧化性的影响[J]. 作物杂志, 2018, (3): 123–128
[5] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[6] 陈亮妹,李江遐,胡兆云,叶文玲,吴文革,马友华. 重金属低积累作物在农田修复中的研究与应用[J]. 作物杂志, 2018, (1): 16–24
[7] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[8] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[9] 周彤,陈雯,秦培亮,刘涛,孙成明. 作物水分智能管理研究进展[J]. 作物杂志, 2017, (5): 7–13
[10] 丁超,张建华,白文斌,郭瑞峰,曹昌林. 高粱田常用除草剂对高粱生理生化及产量品质的影响[J]. 作物杂志, 2017, (5): 149–155
[11] 闫寒,宋杭霖,张丽,闫晶,石贤吉,朱诗苗,刘璐,李虎林. 镉胁迫对烤烟农艺性状及生理生化指标的影响[J]. 作物杂志, 2017, (5): 156–161
[12] 熊辉岩,段瑞君,王瑞生. 冷驯化影响越冬作物光合特性和株型特征的生理基础与分子机制的研究进展[J]. 作物杂志, 2017, (4): 21–26
[13] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[14] 李燕敏,祁显涛,刘昌林,刘方,谢传晓. 除草剂抗性农作物育种研究进展[J]. 作物杂志, 2017, (2): 1–6
[15] 陈霞燕,王连喜,任景全,郭春明,李琪,李莹莹. 吉林省春玉米生产潜力及其敏感性分析[J]. 作物杂志, 2016, (6): 91–98
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .