作物杂志,2016, 第4期: 20–25 doi: 10.16035/j.issn.1001-7283.2016.04.004

• 专题综述 • 上一篇    下一篇

赤霉素调控植物块茎形态建成的研究进展

周芸伊1,张静1,王亚伦1,肖冬1,2,王爱勤1,2,何龙飞1,2   

  1. 1 广西大学农学院,530004,广西南宁
    2 广西高校作物栽培学与耕作学重点实验室,530004,广西南宁
  • 收稿日期:2016-05-20 修回日期:2016-06-28 出版日期:2016-08-15 发布日期:2018-08-26
  • 通讯作者: 何龙飞
  • 作者简介:作者简介:周芸伊,硕士研究生,研究方向为植物生理与分子生物学
  • 基金资助:
    国家自然科学基金(30760126);国家公益性行业(农业科研专项200903022)

Progress of Gibberellin Regulation on Tuber Morphogenesis in Higher Plant

Zhou Yunyi1,Zhang Jing1,Wang Yalun1,Xiao Dong1,2,Wang Aiqin1,2,He Longfei1,2   

  1. 1 College of Agronomy,Guangxi University,Nanning 530004,Guangxi,China
    2 Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage,Nanning 530004,Guangxi,China
  • Received:2016-05-20 Revised:2016-06-28 Online:2016-08-15 Published:2018-08-26
  • Contact: Longfei He

摘要:

赤霉素对植物的生长发育具有重要的调控作用。综述了赤霉素调控块茎形态建成的研究进展。块茎形态建成是一个复杂的生理过程,受遗传、坏境等因素共同调控,其中,激素调控发挥重要作用。虽然多种激素参与调控块茎的形态建成,但它们的效果最终均依赖于赤霉素含量。一般认为赤霉素抑制或延缓块茎的形成,但对块茎生长膨大的作用有不同的看法。已明确植物体内赤霉素转导的GA-GID1-DELLA路径,但是否在块茎形态建成过程中发挥作用还不清楚。最后提出块茎形态建成可能分为块茎启动和生长膨大两个不同阶段,分属于两个独立的调控系统,同时存在不同于GA-GID1-DELLA信号通路的赤霉素途径,赤霉素在其中发挥的作用不同,机制也不同。

关键词: 赤霉素, 块茎, 形态建成, 发育, 研究进展

Abstract:

Gibberellin (GA) plays an essential role in plant growth and development. This paper reviews the research progresses made in the regulating mechanism of GA on tuber morphogenesis in higher plant. Tuber morphogenesis is a complex physiological process regulated by hereditary, environment, etc. Among them, the hormones control plays an important role. Many types of hormones are involved in tuber morphogenesis, but in the end their effects are dependent on the GA content.It is thought that endogenous gibberellin inhibit or delay tuber formation, but there are different views on the effects of GA on tuber growth and expansion. GA-GID1-DELLA pathway had been certified as one of GA signal pathway in higher plant, but it is unclear on the effects of the pathway in tuber morphogenesis. It is put forward that tuber morphogenesis maybe divide into two different stages including tuber initiation and tuber expansion, which belongs different regulating systems. In the meanwhile, it may have another GA signal pathway unlike GA-GID1-DELLA. GA has different effects and mechanisms in different signal pathways.

Key words: Gibberellin, Tuber, Morphogenesis, Development, Research progress

[1] Xu X, Lammeren A A M,Vermeer E, et al. The role of gibberellin,abscisic acid,and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998,117(2):575-584.
doi: 10.1104/pp.117.2.575
[2] Viola R, Roberts A G, Haupt S , et al. Tuberization in potato involves a switch from apoplastic to symplastic phloemunloading. The Plant Cell, 2001,13:385-398.
doi: 10.1105/tpc.13.2.385
[3] 柳俊, 谢从华 . 马铃薯块茎发育机理及其基因表达. 植物学通报, 2001,18(5):531-539.
[4] Agrawal L, Chakraborty S, Jaiswal D K , et al. Comparative proteomics of tuber induction,development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). Journal of Proteome Research, 2008,7:3803-3817.
doi: 10.1021/pr8000755
[5] Aksenovaa N P, Konstantinovaa T N, Golyanovskaa S A , et al. Horminal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 2012,59(4):451-466.
doi: 10.1134/S1021443712040024
[6] 韦本辉 . 中国淮山药栽培.北京: 中国农业出版社, 2013: 12.
[7] Vreugdenhil D . Comparing potato tubrization and sprouting:opposite phenomena. American Journal of Potato Research, 2004,81:275-280.
doi: 10.1007/BF02871769
[8] 盛玮, 薛建平, 张爱民 , 等. 半夏试管块茎形成过程中内源激素的变化. 中国中药杂志, 2010,35(8):943-946.
[9] Romanov G A, Aksenova N P, Konstantinova T N , et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regulation, 2000,32:245-251.
doi: 10.1023/A:1010771510526
[10] Faivre R O, Cardle L, Marshall D , et al. Changes in gene expression during meristem activation processes in Solanum tubersum with a focus on the regulation of an auxin response factor gene. Journal of Experimental Botany, 2004,55:613-622.
doi: 10.1093/jxb/erh075
[11] Roumeliotis E, Visser R G, Bachem C W . A crosstalk of auxin and GA during tuber development. Plant Signaling & Behavior, 2012,7:1360-1363.
[12] Koda Y, Kikuta Y, Tazaki H , et al. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry, 1991,30:1435-1438.
doi: 10.1016/0031-9422(91)84180-Z
[13] Koda Y, Kikuta Y . Wound-induced accumulation of jasmonic acid in tissues of potato tubers. Plant Cell Physiology, 1994,35:751-756.
doi: 10.1093/oxfordjournals.pcp.a078653
[14] Sarkar D, Pandey S K, Sharma S . Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro.Plant Cell, Tissue and Organ Culture, 2006,87:285-295.
doi: 10.1007/s11240-006-9166-3
[15] Sohn H B, Lee H Y, Seo J S , et al. Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnology Reports, 2011,5:27-34.
doi: 10.1007/s11816-010-0153-0
[16] Imanparast F, Tobeh A, Gholipouri A , et al. Jasmonic acid effects on potato mini-tubers morphological attribute. International Journal of Agronomy and Plant Production, 2013,4(2):307-313.
[17] Ewing E E . The role of hormones in potato (Solanum tuberosum L.) tuberization.Plant hormones and their role in plant growth and development. Biochemistry and Molecular Biology, 1987: 515-538.
[18] Dick V, Struik P C . An intergrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum L.). Physiologia Plantarum, 1989,75:525-531.
doi: 10.1111/ppl.1989.75.issue-4
[19] Jackson S D, Prat S . Control of tuberisation in potatoby gibberellins and phytochrome B. Plant Physiology, 1996,98:407-412.
[20] 张志军, 贾明进, 李会珍 . 赤霉素对马铃薯块茎形成的影响. 中国马铃薯, 2003,17(5):295-297.
[21] Koda Y, Okazawa Y . Characteristic changes in the levels of endogenous plant hormones in relation to the onset of potato tuberization. Japanese Journal of Crop Science, 1983,52:592-597.
doi: 10.1626/jcs.52.592
[22] Carrera E, Bou J , Garcia-Martinez J L.Changes in GA 20-oxidase gene expression strongly affects stem length,tuber induction and tuber yield of potato plants. Plant Journal, 2000,22:247-256.
doi: 10.1046/j.1365-313x.2000.00736.x
[23] Radmacher W . Growth retardants:effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular and Biology, 2000,51:501-503.
doi: 10.1146/annurev.arplant.51.1.501
[24] 柳俊 .马铃薯试管块茎的形成机理及块茎形成调控. 武汉:华中农业大学, 2001.
[25] 连勇, 邹颖, 东惠茹 . 马铃薯试管块茎形成过程中几种内源激素的变化. 园艺学报, 2002,29(6):537-541.
[26] 常莉, 徐有明, 薛建平 . 离体培养条件下半夏叶柄形成珠芽过程中内源激素的变化. 华中农业大学学报, 2007,26(5):612-615.
[27] 盛玮, 薛建平, 张爱民 , 等. 半夏试管块茎形成过程中内源激素的变化. 中国中药杂志, 2010,35(8):943-946.
[28] 岳二魁 .赤霉素调控半夏块茎形成的相关基因的研究. 淮北:淮北师范大学, 2013.
[29] 刘悦善 .赤霉素调控的马铃薯块茎离体发育蛋白质组研究. 兰州:甘肃农业大学, 2014.
[30] Van Den Berg J H, Simko I, Davies P J , et al. Morphology and [ 14C]gibberellin A12 metabolism in wild-type and dwarf Solanum tuberosum ssp.Andigena grown under long and short photoperiods . Journal of Plant Physiology, 1995,146:467-473.
doi: 10.1016/S0176-1617(11)82010-9
[31] Kloosterman B, Navarro C, Bijsterbosch G , et al. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potatotuber development. Plant Journal, 2007,52:362-373.
doi: 10.1111/tpj.2007.52.issue-2
[32] Bou-Torrent J , Martínez-García J F,García-Martínez J L,et al.Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PloS One, 2011,6:e24458.
doi: 10.1371/journal.pone.0024458
[33] 刘海霞 .马铃薯块茎离体发育过程的差异蛋白组. 兰州:甘肃农业大学, 2013.
[34] 常莉, 薛建平, 宋运贤 , 等. 怀山药试管块茎形成过程中内源激素的变化. 中国中药杂志, 2010,35(21):2818-2821.
[35] 龚明霞, 罗海玲, 袁红娟 , 等. 外源赤霉素和多效唑对山药块茎膨大和零余子形成的影响. 园艺学报, 2015,42(6):1175-1184.
doi: 10.16420/j.issn.0513-353x.2014-1090
[36] Mignery G A, Pikaard C S, Park W D . Molecular characterization of the patatin multigene family of potato. Gene, 1988,62:27-44.
doi: 10.1016/0378-1119(88)90577-X
[37] Agrawal L, Chakraborty S, Jaiswal D K , et al. Comparative proteomics of tuber induction,development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). Journal of Proteome Research, 2008,7:3803-3817.
doi: 10.1021/pr8000755
[38] Hannapel D J, Miller J C, Park W D . Regulation of potato tuber protein accumulation by gibberellic acid. Plant Physiology, 1985,78:700-703.
doi: 10.1104/pp.78.4.700
[39] Appeldoorn N J G, Steef N B, Elly A M G , et al. Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta, 1997,202:220-226.
doi: 10.1007/s004250050122
[40] Vreugdenhil D, Xu X, Jung C S , et al. Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.)cuttings:A re-evaluation. Annals of Botany, 1999,84:675-680.
doi: 10.1006/anbo.1999.0950
[41] Mares D J, Marschmer H, Krauss A . Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato. Physiologia Plantarum, 1981,52:267-274.
doi: 10.1111/ppl.1981.52.issue-2
[42] Abdul J C, Kishorekumar A, Manivannan P , et al. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regulation, 2007,53(1):7-16.
doi: 10.1007/s10725-007-9198-7
[43] Morell M K, Bloom M, Knowles V , et al. Subunit structure of spinach leaf ADP-glucose pyrophosphorylase. Plant Physiology, 1987,85:182-187.
doi: 10.1104/pp.85.1.182
[44] Fu Y, Ballieora M A, Preiss J . Mutagenesis of the glueose-1-phosphate-binding site of potato tuber ADP-laeose pyrophos-pphorylase. Plant Physiology, 1998,117:989-996.
doi: 10.1104/pp.117.3.989
[45] Zhang W W, Luo Y P, Gong X , et al. Computational identification of 48 potato microRNAs and their targets. Computational Biology and Chemistry, 2009,33:84-93.
doi: 10.1016/j.compbiolchem.2008.07.006
[46] Zhang R, Marshall D, Bryan G J , et al. Identification and characterization of miRNA transcriptome in potato by high-through put sequencing. PloS One, 2013,8:e57233.
doi: 10.1371/journal.pone.0057233
[47] Lakhotia N, Joshi G, Bhardwaj A R , et al. Identification and characterization of miRNAome in root,stem,leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology, 2014,14:e6.
doi: 10.1186/1471-2229-14-6
[48] Achard P, Herr A, Baulcombe D C , et al. Modulation of floral development by a gibberellin -regulated microRNA. Developmental Biology, 2004,14(131):2257-3365.
[49] Martin A, Adam H, Diaz-Mendoza M , et al. Graft-transmissible induction of potato tuberization by the microRNA,miR172. Development, 2009,136:2873-2881.
doi: 10.1242/dev.031658
[50] Sunkar R . MicroRNAs in Plant Development and Stress Responses.Berlin: Springer-Verlag, 2012.
[51] Bhogale S, Mahajan A S, Natarajan B , et al. miRNA156 a potential graft transmissible microRNA that modulates plant architecture and tuberization in potato (Solanum tuberosum ssp andigena). Plant Physiology, 2014,164:1011-1027.
doi: 10.1104/pp.113.230714
[52] Silverstone A L, Ciampaglio C N, Sun T P . The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 1998,10:155-169.
doi: 10.1105/tpc.10.2.155
[53] Ueguchi-Tanaka M, Ashikari M, Nakajima M , et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005,437:693-698.
doi: 10.1038/nature04028
[54] Sun T . The molecular mechanism and evolution of the review GA-GID1-DELLA signaling module in plants. Current Biology, 2011,21:338-345.
doi: 10.1016/j.cub.2011.01.036
[55] 岳川, 曾建明, 曹红利 , 等.高等植物赤霉素代谢及其信号转导通路.植物生理学报. 2012,48(2):118-128.
[56] 廖文彬, 彭明 . 木薯赤霉素途径DELLA 蛋白基因克隆及其对干旱胁迫的响应. 热带生物学报, 2012,3(4):297-304.
[57] 张彤, 赵琳, 赵建刚 , 等. 植物DELLA蛋白的功能及其在大豆中的研究. 大豆科学, 2011,30(5):874-879.
[58] 宋仙萍 .大豆DELLA基因GmGAI1a参与赤霉素信号传导途径的功能分析. 哈尔滨:东北农业大学, 2013.
[59] 李强 .甘蔗赤霉素合成与信号途径关键基因的克隆及表达分析. 桂林:广西大学, 2014.
[60] 龙雯虹, 郭华春, 肖关丽 , 等. 山药珠芽生长过程中激素和糖类物质含量的变化. 园艺学报, 2011,38(4):4753-4760.
[1] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[2] 熊伟姣,王亚伦,姚绍嫦,潘春柳,肖冬,王爱勤,何龙飞. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, 2018, (1): 1–8
[3] 董立强,李睿,商文奇,王铮,李跃东. 东北稻区肥料施用现状、存在的问题与应对策略[J]. 作物杂志, 2017, (6): 17–22
[4] 卫滢,詹若挺,梁红玲,王浩涵,黄海波. 基于ITS2和psbA-trnH序列鉴别巴戟天及其3种近缘植物[J]. 作物杂志, 2017, (5): 55–60
[5] 黄刘亚,孙永波,刘书武,张永辉,年夫照,顾勇. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展[J]. 作物杂志, 2017, (4): 15–20
[6] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
[7] 赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生. 碳纳米材料对植物生长发育的调节作用[J]. 作物杂志, 2017, (2): 7–13
[8] 李海燕,蔡德利,陈井生,段玉玺,陈立杰,商莹宇. 大豆抗感资源对大豆胞囊线虫3号生理小种生长发育动态的影响[J]. 作物杂志, 2017, (1): 144–149
[9] 姜海洋,马光恕,王萌,施园,高铃铃,廉华. 马铃薯块茎不同部位糖类物质的变化特点[J]. 作物杂志, 2016, (6): 73–78
[10] 张坤,吕伟生,段里成,胡水秀,曾勇军,潘晓华,石庆华. 机插对晚稻栽后秧苗生长和生育期的影响[J]. 作物杂志, 2016, (5): 112–118
[11] 王绍敏,国淑梅,牛贞福,张鹤. 45%烯肟菌胺·苯醚甲环唑·噻虫嗪悬浮种衣剂对冬小麦生长发育的影响和主要病虫害的防控研究[J]. 作物杂志, 2016, (4): 167–171
[12] 陈杰, 付继刚, 杨天沛, 等. 我国烟蚜防治研究进展[J]. 作物杂志, 2015, (6): 21–26
[13] 徐敏, 金路路, 王子胜. 辽河流域棉区棉铃发育进程研究[J]. 作物杂志, 2015, (5): 69–73
[14] 冯瑞云, 王慧杰, 闫贵云, 等. 旱地宽窄行种植对春玉米冠层结构、光合特性及产量的影响[J]. 作物杂志, 2015, (5): 80–84
[15] 王泳超, 顾万荣, 魏湜, 等. 新型植物生长复配剂对玉米幼苗形态建成及叶片生理特性的调控效应[J]. 作物杂志, 2015, (2): 89–94
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .