作物杂志,2017, 第2期: 114–120 doi: 10.16035/j.issn.1001-7283.2017.02.020

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

反枝苋和大豆对降雨季节波动的生理生态响应

鲁萍1,金成功1,张茜2,姜佰文1,闫南南2,肖同玉1,白雅梅1,李景欣2,陈睿1,李静1   

  1. 1 东北农业大学资源与环境学院,150030,黑龙江哈尔滨
    2 东北农业大学动物科学技术学院,150030,黑龙江哈尔滨
  • 收稿日期:2016-10-08 修回日期:2017-01-10 出版日期:2017-04-15 发布日期:2018-08-26
  • 通讯作者: 姜佰文
  • 作者简介:鲁萍,副教授,研究方向为生物入侵及农业生态学|金成功为共同第一作者,硕士研究生,研究方向为植物营养
  • 基金资助:
    黑龙江省教育厅科学技术研究项目(12541021)

The Responses of the Ecophysiological Characteristics of Amaranthus retroflexus and Glycine max to Seasonal Rainfall Fluctuations

Lu Ping1,Jin Chenggong1,Zhang Xi2,Jiang Baiwen1,Yan Nannan2,Xiao Tongyu1,Bai Yamei1,Li Jingxin2,Chen Rui1,Li Jing1   

  1. 1 School of Resources and Environmental Sciences,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
    2 College of Animal Science and Technology,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
  • Received:2016-10-08 Revised:2017-01-10 Online:2017-04-15 Published:2018-08-26
  • Contact: Baiwen Jiang

摘要:

在棚室盆栽条件下,以外来杂草反枝苋(Amaranthus retroflexus)和作物大豆(Glycine max)为试验材料,模拟不同的降雨季节格局,研究两物种的比叶面积、丙二醛、脯氨酸和可溶性蛋白含量的季节动态变化。结果表明,在干旱少雨的条件下,两物种均通过减少比叶面积来减少水分的蒸发;但反枝苋积累的脯氨酸和可溶性蛋白含量均大于大豆。说明,在生长旺季缺水的条件下,反枝苋的膜质过氧化程度小于大豆,且恢复较好。生长初期混栽反枝苋的丙二醛含量均高于大豆,受水分胁迫影响较大;但进入大豆开花结荚期后,混栽反枝苋的脯氨酸含量高于大豆,膜质过氧化程度小于大豆,受水分胁迫影响较小。说明在反枝苋入侵农田的过程中,通过调节其自身形态特征和生理物质含量适应降雨季节波动,这可能是其在农田中分布广泛的重要原因之一。

关键词: 反枝苋, 大豆, 降雨季节波动, 生理生态特性

Abstract:

An invasive weed Amaranthus retroflexus and a crop Glycine max were chosen as materials in the greenhouse potted experiment. The specific leaf area (SLA), malondialdehyde (MDA) content, proline content and soluble protein content in leaves of the two species response to the seasonal rainfall fluctuations were studied based on the method of simulating different seasonal rainfall fluctuations. The results showed that both species decreased leaf area to reduce evaporation, while proline and soluble protein contents in leaves of A. retroflexus were higher than those of G. Max under dry and lack of rain conditions, which illustrated that even in the fast growing season under the condition of water shortage, the level of membrane lipid peroxidation of leaves of A. retroflexuswas less than that of G. max, and A. retroflexus could recover quickly. On the seeding stage, the MDA content in leaves of A. retroflexus was higher than that of G. max in mixed cropping, which indicated that A. retroflexus was under severe water stress. But on the flowering stage of G. max, the proline and soluble protein content of A. retroflexus were higher than those of G. max in mixed cropping and the level of membrane lipid peroxidation of A. retroflexus was less than that of G. max, which indicated that A. retroflexus was less affected by water stress than G. max. Therefore, A. retroflexus can adjust morphological character and physiological substance contents to adapt different seasonal rainfall fluctuations in the process of invading agro-ecosystem. It may be one of the important reasons of A. retroflexus can widely distributed in farmland.

Key words: Amaranthus retroflexus, Glycine max, Seasonal rainfall fluctuation, Ecophysiological characteristics

图1

4种降雨季节格局的模拟降雨量分布 中高峰即中高峰式降雨季节格局,双高峰即早晚双高峰式降雨季节格局,早高峰即早高峰式降雨季节格局,晚高峰即晚高峰式降雨季节格局"

图2

不同生育期大豆和反枝苋的比叶面积 图中数据均为4次测定的平均值±标准误,不同大写字母表示同一生育期不同降雨格局之间差异显著,不同小写字母表示同一降雨格局不同生育期之间差异显著(P<0.05),下同。"

图3

不同生育期大豆和反枝苋叶片的丙二醛含量"

图4

不同生育期大豆和反枝苋叶片的脯氨酸含量"

图5

不同生育期大豆和反枝苋叶片的可溶性蛋白含量"

[1] Stocker T F D, Qin G K, Plattner M , et al. Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2013.
[2] Solomon S, Qin D, Manning M , et al. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2007.
[3] Kunkel K E , Pielke J R A,Changnon S A.Temporal fluctuations in weather and climate extremes that cause economic and human health impacts:a review. Bulletin of the American Meteorolgical Society, 1999,80(6):1077-1098.
doi: 10.1175/1520-0477(1999)080&lt;1077:TFIWAC&gt;2.0.CO;2
[4] Wang H, Sun J, Chen H , et al. Extreme climate in China:facts,simulation and projection. Meteorologische Zeitschrift, 2012,21(3):279-304.
doi: 10.1127/0941-2948/2012/0330
[5] 强生才, 张恒嘉, 莫非 , 等. 微集雨模式与降雨变律对燕麦大田水生态过程的影响. 生态学报, 2011,31(9):2365-2373.
[6] 赵鸿, 肖国举, 王润元 , 等. 气候变化对半干旱雨养农业区春小麦生长的影响. 地球科学进展, 2007,22(3):93-98.
doi: 10.3321/j.issn:1001-8166.2007.03.013
[7] 徐海根, 强胜, 韩正敏 , 等. 中国外来入侵物种的分布与传入路径分析. 生物多样性, 2004,12(6):626-638.
[8] 强胜, 曹学章 . 中国异域杂草考察与分析. 植物资源与环境学报, 2000,9(4):31-38.
[9] Montserrat V, Williamson M, Lonsdale M . Competition experiments on alien weeds with crops:lessons for measuring plant invasion impact? Biological Invasions, 2004,6:59-69.
doi: 10.1023/B:BINV.0000010122.77024.8a
[10] 张茜, 金成功, 李景欣 , 等. 降雨季节波动对反枝苋与大豆光合色素的影响.作物杂志, 2016(1):154-161.
doi: 10.16035/j.issn.1001-7283.2016.01.029
[11] 国家环境保护部和中国科学院.中国外来入侵物种名单( 第三批), 2014.
[12] 鲁萍, 梁慧, 王宏燕 , 等. 外来入侵杂草反枝苋的研究进展. 生态学杂志, 2010,29(8):1662-1670.
[13] Clements D R , DiTommaso A,Jordan N,et al.Adaptability of plants invading North American cropland agriculture. Ecosystems Environment, 2004,104:379-398.
doi: 10.1016/j.agee.2004.03.003
[14] 王俊峰, 冯玉龙, 梁红柱 . 紫茎泽兰光合特性对生长环境光强的适应. 应用生态学报, 2004,15(8):1373-1377.
[15] 郭水良, 方芳, 黄华 , 等. 外来入侵植物北美车前繁殖及光合生理生态学研究. 植物生态学报, 2004,28(6):787-793.
[16] 黄华, 郭水良 . 外来植物加拿大一枝黄花生理指标的季节动态及其适应意义. 浙江师范大学学报, 2005,28(2):201-205.
[17] 周文杰, 芦站根, 刘国民 . 外来植物黄顶菊生理指标的季节动态及适应意义.江苏农业科学, 2008(5):105-107.
[18] 徐广惠, 王宏燕, 刘佳 . 抗草甘膦转基因大豆(RRS)对根际土壤细菌数量和多样性的影响. 生态学报, 2009,29(8):4535-4541.
doi: 10.3321/j.issn:1000-0933.2009.08.062
[19] Glimore D W, Seymour R S, Halteman W A , et al. Greenwood,Canopy dynamics and the morphological development of Abies balsamea:effects of foliage age on specific leaf area and secondary vascular development. Tree Physiology, 1995,15:47-55.
doi: 10.1093/treephys/15.1.47
[20] 王满莲, 冯玉龙 . 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应. 植物生态学报, 2005,29(5):697-705.
doi: 10.1017/S0963180100005922
[21] 汤章诚 . 现代植物生理学实验指导.北京: 科学出版社, 1999.
[22] Feng Y L, Fu G L, Zheng Y L . Specific leaf area relates to the differences in leaf construction cost,photosynthesis,nitrogen allocation,and use efficiencies between invasive and noninvasive alien congeners. Planta, 2008,228:383-390.
doi: 10.1007/s00425-008-0732-2
[23] 郭水良, 方芳 . 入侵植物加拿大一枝黄花对环境的生理适应性研究. 植物生态学报, 2003,27(1):47-52.
doi: 10.17521/cjpe.2003.0007
[24] 郭水良, 方芳, 强胜 . 不同温度对七种外来杂草生理指标的影响及其适应意义. 广西植物, 2003,23(1):73-76.
[25] 吴海荣, 强胜 . 南京市秋季外来杂草定量调查研究. 生物多样性, 2003,11(5):432-438.
[26] 董全中, 杨兴勇, 张勇 , 等. 降雨量不足对大豆产量及农艺性状影响的研究.大豆科技, 2006(3):5-8.
[27] Shurtleff J L, Coble H D . The interations of soybean (Glycine max) and five weed species in the greenhouse. Weed Science, 1985,33:669-679.
[28] Légère A, Schreiber M M . Competition and canopy architecture as affected by soybean (Glycine max) row width and density of redroot pigweed (Amaranthus retroflexus). Weed Science, 1989,37:84-92.
[29] Delhaize E, Ryan P R . Aluminum toxicity and tolerance in plants. Plant Physiology, 1995,107:315-321.
doi: 10.1104/pp.107.2.315 pmid: 12228360
[30] 汤章诚 . 逆境条件下植物Pro积累及可能的意义. 植物生理学通讯, 1984,10(1):15-21.
[31] 彭志红, 彭克勤, 胡家金 . 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 2002,18(4):80-83.
[32] 褚建民, 邓东周, 王琼 , 等. 降雨量变化对樟子松生理生态特性的影响. 生态学杂志, 2011,30(12):2672-2678.
[33] 梁慧, 鲁萍, 吴岩 , 等. 氮素资源波动对反枝苋与大豆硝酸还原酶活性的影响.作物杂志, 2012(3):39-43.
[34] 田秋阳, 周鸿章, 鲁萍 , 等. 外来杂草反枝苋对大豆根际土壤微生物碳源利用和土壤理化性质的影响.作物杂志, 2012(2):24-30.
doi: 10.3969/j.issn.1001-7283.2012.02.006
[35] Lu P, Li J X, Jin C G , et al. Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition. Plos One, 2016,11(6):e0156285.
doi: 10.1371/journal.pone.0156285
[1] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[2] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[3] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152–155
[4] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156–159
[5] 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 37–44
[6] 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 1–5
[7] 周学超,丁素荣,魏云山,周艳芳,魏学,娜日娜,李峰. 不同鲜食大豆品种(系)在赤峰地区的适应性评价[J]. 作物杂志, 2017, (3): 44–48
[8] 任国勇,李伟,张礼凤,王彩洁,戴海英,王金龙,徐冉,张彦威. 转HarpinXooc蛋白编码基因hrf2大豆的胞囊线虫病1号小种抗性鉴定[J]. 作物杂志, 2017, (3): 49–53
[9] 张旭丽,邢宝龙,王桂梅,殷丽丽. 密度对晋北区大豆农艺性状、经济性状及产量的影响[J]. 作物杂志, 2017, (3): 127–131
[10] 张喜亭,曹立为,吕书财,陈国兴,王永吉,于舒函,龚振平. 黑土容重对大豆氮素吸收及产量的影响[J]. 作物杂志, 2017, (3): 132–137
[11] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
[12] 闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨. 大豆GmWRI1a基因启动子克隆及序列分析[J]. 作物杂志, 2017, (2): 51–58
[13] 高宇,刘延超,史树森,崔娟,熊晋峰. 我国大豆田蓟马研究现状[J]. 作物杂志, 2017, (1): 8–13
[14] 李海燕,蔡德利,陈井生,段玉玺,陈立杰,商莹宇. 大豆抗感资源对大豆胞囊线虫3号生理小种生长发育动态的影响[J]. 作物杂志, 2017, (1): 144–149
[15] 赵乾旭,岳献荣,夏运生,张乃明,年夫照,杨云强,马玉林. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响[J]. 作物杂志, 2016, (5): 94–100
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .