作物杂志,2017, 第4期: 1–6 doi: 10.16035/j.issn.1001-7283.2017.04.001

• 专题综述 •    下一篇

转基因作物种植对土壤生态系统影响的研究进展

梁晋刚1,2,张正光2   

  1. 1 农业部科技发展中心,100122,北京
    2 南京农业大学植物保护学院,210095,江苏南京
  • 收稿日期:2017-04-04 修回日期:2017-06-07 出版日期:2017-08-15 发布日期:2018-08-26
  • 通讯作者: 张正光
  • 作者简介:梁晋刚,农艺师,从事转基因生物安全评价与检测研究
  • 基金资助:
    转基因生物新品种培育科技重大专项(2016ZX08011-003)

Advance on Effects of Genetically ModifiedCrops on Soil Ecosystems

Liang Jingang1,2,Zhang Zhengguang2   

  1. 1 Development Center of Science and Technology,Ministry of Agriculture,Beijing 100122,China
    2 College of Plant Protection,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China
  • Received:2017-04-04 Revised:2017-06-07 Online:2017-08-15 Published:2018-08-26
  • Contact: Zhengguang Zhang

摘要:

土壤是生态系统中物质与能量交换的重要场所。随着转基因作物种植面积的不断增加,其对土壤生态系统的影响日益引起人们的广泛关注。植物和土壤的相互关系对于生态系统的功能稳定和植物健康是至关重要的。综述了转基因作物种植对根际土壤养分、土壤酶活性、土壤微生物群落结构、土壤动物的影响,并对研究方向进行了展望。

关键词: 转基因作物, 土壤生态系统, 土壤养分, 土壤酶活性, 土壤微生物群落结构, 土壤动物

Abstract:

Soils play a major role in ecosystem processes such as substance transformation and energy exchange. With the increase of genetically modified (GM) crops area, their bio-safety for soil ecosystems has become a controversial issue. The interactions between plant roots and soil microorganisms are essential for the function and stability of ecosystems and plant health. In this review, we summarize the effects of GM crops on rhizosphere soil nutrients, soil enzyme activity, soil microbial community structure, and soil fauna. Finally, some research directions are provided for future study.

Key words: Genetically modified crop, Soil ecosystems, Soil nutrients, Soil enzyme activity, Soil microbial community structure, Soil fauna

[1] James C . Global status of commercialized biotech/GM crops:2016.International Service for the Acquisition of Agri-biotech Applications (ISAAA) Brief No.52.ISAAA:Ithaca,NY. 2016.
[2] Singh A K, Dubey S K . Transgenic plants and soil microbes.Current Developments in Biotechnology and Bioengineering:Crop Modification,Nutrition, and Food Production, 2016: 163.
[3] 焦悦, 梁晋刚, 翟勇 . 转基因作物安全评价研究进展.作物杂志, 2016(5):1-7.
[4] 杨永华 . 转基因作物对土壤微生物群落的影响及主要研究策略. 农业生物技术学报, 2011,19(1):1-8.
doi: 10.3969/j.issn.1674-7968.2011.01.001
[5] Badea E M, Chelu F, Lăcătuşu A . Results regarding the levels of Cry1Ab protein in transgenic corn tissue (MON810) and the fate of Bt protein in three soil types. Romanian Biotechnological Letters, 2010,15(1):55-62.
[6] Liu Y, Li J, Luo Z , et al. The fate of fusion Cry1Ab/1Ac proteins from Bt-transgenic rice in soil and water. Ecotoxicology & Environmental Safety, 2015,124:455-459.
doi: 10.1016/j.ecoenv.2015.11.025 pmid: 26624932
[7] Singh A K, Dubey S K . Current trends in Bt crops and their fate on associated microbial community dynamics:a review. Protoplasma, 2016,253(3):663-681.
doi: 10.1007/s00709-015-0903-5 pmid: 26560114
[8] Saxena D, Flores S, Stotzky G . Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biology & Biochemistry, 2002,34(1):133-137.
[9] Herman R A, Scherer P N, Wolt J D . Rapid degradation of a binary,PS149B1,δ-endotoxin of Bacillus thuringiensis in soil,and a novel mathematical model for fitting curve-linear decay. Environmental Entomology, 2002,31(2):208-214.
doi: 10.1603/0046-225X-31.2.208
[10] Zwahlen C, Hilbeck A, Gugerli P , et al. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology, 2003,12(3):765-775.
doi: 10.1046/j.1365-294X.2003.01767.x
[11] Dubelman S, Ayden B R, Bader B M , et al. Cry1Ab protein does not persist in soil after 3 years of sustained Bt corn use. Environmental Entomology, 2005,34(4):915-921.
doi: 10.1603/0046-225X-34.4.915
[12] Hung T P, Truong L V, Binh N D , et al. Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils. Environmental Pollution, 2016,208(Pt B):318-325.
doi: 10.1016/j.envpol.2015.09.046
[13] Chen Z, Wei K, Chen L , et al. Effects of the consecutive cultivation and periodic residue incorporation of Bacillus thuringiensis (Bt) cotton on soil microbe-mediated enzymatic properties.Agriculture, Ecosystems & Environment, 2017,239:154-160.
[14] Kamota A, Muchaonyerwa P, Mnkeni P N S .Decomposition of surface-applied and soil-incorporated Bt maize leaf litter and Cry1Ab protein during winter fallow in South Africa. Pedosphere, 2014,24(2):251-257.
doi: 10.1016/S1002-0160(14)60011-4
[15] Zeng X, Zhou Y, Zhu Z , et al. Effect on soil properties of BcWRKY1 transgenic maize with enhanced salinity tolerance. International Journal of Genomics, 2016,2016(5):1-13.
doi: 10.1155/2016/6019046 pmid: 5136422
[16] Liang J, Meng F, Sun S , et al. Community structure of arbuscular mycorrhizal fungi in rhizospheric soil of a transgenic high-methionine soybean and a near isogenic variety. PLoS One, 2015,10:e0145001.
doi: 10.1371/journal.pone.0145001
[17] Liang J, Sun S, Ji J , et al. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One, 2014,9(7):e103343.
doi: 10.1371/journal.pone.0103343
[18] Sahoo R, Ansari M, Tuteja R , et al. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere. Chemosphere, 2015,119:1040-1047.
doi: 10.1016/j.chemosphere.2014.08.011
[19] 章秋艳, 李刚, 杨志国 , 等. 转基因大豆种植对根际土壤酶活性和养分的影响. 中国油料作物学报, 2014,36(3):409-413.
doi: 10.7505/j.issn.1007-9084.2014.03.019
[20] 吴凡, 林桂潮, 吴坚文 , 等. 转AtPAP15基因大豆种植对根际土壤养分及酶活性的影响. 土壤学报, 2013,50(3):600-608.
[21] 赵哲, 丁伟, 马有志 , 等. 转DREB3基因抗旱大豆对土壤理化性状的影响.作物杂志, 2012(4):62-64.
doi: 10.3969/j.issn.1001-7283.2012.04.014
[22] 刘红梅, 赵建宁, 黄永春 , 等. 种植转双价基因(Bt+CpTI)棉对主要土壤养分和酶活性的影响. 棉花学报, 2012,24(2):133-139.
doi: 10.3969/j.issn.1002-7807.2012.02.006
[23] Sahoo R K, Tuteja N . Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties,enzymatic activities and microbial communities of rhizosphere soils. Plant Signaling & Behavior, 2013,8(8):113-116.
[24] 刘志华, 姜振峰, 张少良 , 等. 转BADH基因大豆对盐碱土壤氮素转化的影响. 中国生态农业学报, 2014,22(10):1200-1206.
doi: 10.13930/j.cnki.cjea.140277
[25] O'Callaghan M ,Glare T R,Burgess E P J, et al. Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology, 2005,50:271-292.
doi: 10.1146/annurev.ento.50.071803.130352 pmid: 15355241
[26] 曹慧, 孙辉, 杨浩 , 等. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003,9(1):105-109.
doi: 10.3321/j.issn:1006-687X.2003.01.025
[27] 车明超, 黄占斌, 王晓茜 , 等. 施用保水剂对土壤氮素淋溶及脲酶活性的影响. 农业环境科学学报, 2010,29(增刊):93-97.
[28] Icoz I, Saxena D, Andow D , et al. Microbial populations and enzyme activities in soil in situ under transgenic corn expressing cry proteins from Bacillus thuringiensis. Journal of Environmental Quality, 2008,37(2):647-662.
doi: 10.2134/jeq2007.0352
[29] Wu J, Yu M, Xu J , et al. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil. PLoS One, 2014,9:e98394.
doi: 10.1371/journal.pone.0098394
[30] 俞明正, 戴濡伊, 吴季荣 , 等. 转TaDREB4基因抗旱小麦对其根际土壤速效养分、酶活性及微生物群落多样性的影响. 江苏农业学报, 2013,29(5):938-945.
doi: 10.3969/j.issn.1000-4440.2013.05.003
[31] 风春, 赵建宁, 李刚 , 等. 转双价基因棉花对根际土壤酶活性和养分含量的影响. 棉花学报, 2013,25(2):178-183.
doi: 10.3969/j.issn.1002-7807.2013.02.013
[32] Fang H, Dong B, Yan H , et al. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes,respiration,functional diversity and community structure of soil microorganisms under field conditions. Journal of Environmental Sciences, 2012,24(7):1259-1270.
doi: 10.1016/S1001-0742(11)60939-X
[33] Zhou D, Xu L, Gao S , et al. Cry1Ac transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season. Frontiers in Plant Science, 2016,7(265):1-4.
[34] Hannula S E, De Boer W, Van Veen J . A 3-year study reveals that plant growth stage,season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS One, 2012,7(4):e33819.
doi: 10.1371/journal.pone.0033819
[35] Das S K, Varma A . Role of enzymes in maintaining soil health//Shukla G,Varma A (eds) Soil Enzymology.Springer-Verla, 2011.
[36] 郭文文, 李建勇, 诸葛玉平 , 等. 转基因作物对土壤生态安全的影响.山东农业科学, 2009(10):86-90.
doi: 10.3969/j.issn.1001-4942.2009.10.025
[37] Flores S, Saxena D, Stotzky G . Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biology and Biochemistry, 2005,37(6):1073-1082.
doi: 10.1016/j.soilbio.2004.11.006
[38] Rao MA, Sannino F, Nocerino G , et al. Effect of air-drying treatment on enzymatic activities of soils affected by anthropogenic activities. Biology and Fertility of Soils, 2003,38(5):327-332.
doi: 10.1007/s00374-003-0660-z
[39] Lynch J M, Benedetti A, Insam H , et al. Microbial diversity in soil:ecological theories,the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biology and Fertility of Soils, 2004,40(6):363-385.
doi: 10.1007/s00374-004-0784-9
[40] 王忠华, 周美园 . 转基因植物根系分泌物对土壤微生态的影响. 应用生态学报, 2002,13(3):373-375.
[41] 张卉, 刘长江 . 转基因作物安全性研究进展. 沈阳农业大学学报, 2002,33(2):151-154.
doi: 10.3969/j.issn.1000-1700.2002.02.020
[42] Guan Z, Lu S, Huo Y , et al. Do genetically modified plants affect adversely on soil microbial communities?.Agriculture, Ecosystems & Environment, 2016,235:289-305.
doi: 10.1016/j.agee.2016.10.026
[43] Cotta S, Dias A, Marriel I , et al. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Applied and Environmental Microbiology, 2014,80(20):6437-6445.
doi: 10.1128/AEM.01778-14
[44] Zhang Y, Xie M, Peng D . Effects of the transgenic CrylAc and CpTI insect-resistant cotton SGK321 on rhizosphere soil microorganism populations in northern China. Plant Soil and Environment, 2014,60(6):285-289.
doi: 10.17221/PSE
[45] Zeng H, Tan F, Zhang Y , et al. Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biology and Biochemistry, 2014,75:254-263.
doi: 10.1016/j.soilbio.2014.04.024
[46] Liang J, Xin L, Meng F , et al. High-methionine soybean has no adverse effect on functional diversity of rhizosphere microorganisms. Plant Soil and Environment, 2016,62(10):441-446.
doi: 10.17221/PSE
[47] Romão-Dumaresq A S, Dourado M N ,de Lima Favaro L C, et al. Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One, 2016,11(7):e0158974.
doi: 10.1371/journal.pone.0158974
[48] Zhang Z, Liu Y, Yu C , et al. Genetically modified WYMV-resistant wheat exerts little influence on rhizosphere microbial communities. Applied Soil Ecology, 2016,105:169-176.
doi: 10.1016/j.apsoil.2016.04.016
[49] Filion M . Do transgenic plants affect rhizobacteria populations?. Microbial Biotechnology, 2008,1(6):463-475.
doi: 10.1111/j.1751-7915.2008.00047.x pmid: 21261867
[50] Guo J, He K, Hellmich R L , et al. Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies. Scientific Reports, 2016,6:22102.
doi: 10.1038/srep22102
[51] Guo J, He K, Bai S , et al. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance,diversity and community composition. Transgenic Research, 2016,25(6):761-772.
doi: 10.1007/s11248-016-9968-y
[52] Wang Z, Li Y, He K , et al. Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum (Hymenoptera:Braconidae)?. Insect Science, 2016: 1-14.
[53] Jin T, Duan X, Bravo A , et al. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Guenée). Pesticide Biochemistry and Physiology, 2016,131:80-86.
doi: 10.1016/j.pestbp.2015.12.008
[54] Li Y, Zhang Q, Liu Q , et al. Bt rice in China—focusing the nontarget risk assessment. Plant Biotechnology Journal, 2017.
doi: 10.1111/pbi.12720 pmid: 5595716
[55] 袁一杨, 戈峰 . 转Bt基因作物对非靶标土壤动物的影响. 应用生态学报, 2010,21(5):1339-1345.
[56] 郭佳惠, 孔云, 李刚 , 等. 转基因作物对土壤无脊椎动物的影响. 生态学杂志, 2016,35(10):2838-2844.
doi: 10.13292/j.1000-4890.201610.007
[57] Morra M J . Assessing the impact of transgenic plant products on soil organisms. Molecular Ecology, 1994,3(1):53-55.
doi: 10.1111/j.1365-294X.1994.tb00044.x
[58] Magurran A. Measuring biological diversity. Oxford: Blackwell Publishing, 2013: 256.
[59] van Capelle C, Schrader S ,Arpaia S .Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.Science of the Total Environment, 2016,548/549:360-369.
doi: 10.1016/j.scitotenv.2015.12.165
[60] Urzelai A, Hernández A J, Pastor J . Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Science of the Total Environment, 2000,247(2/3):253-261.
doi: 10.1016/S0048-9697(99)00494-5
[61] Schloter M, Dilly O, Munch J C . Indicators for evaluating soil quality.Agriculture, Ecosystems & Environment, 2003,98(1/2/3):255-262.
[62] Yuan Y, Ke X, Chen F , et al. Decrease in catalase activity of Folsomia candida fed a Bt rice diet. Environmental Pollution, 2011,159(12):3714-3720.
doi: 10.1016/j.envpol.2011.07.015 pmid: 21835518
[63] Liu B, Wang L, Zeng Q , et al. Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida. Soil Biology and Biochemistry, 2009,41(9):1841-1846.
doi: 10.1016/j.soilbio.2009.06.004
[64] HÖss S, Nguyen H T, Menzel R , et al. Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. Science of the Total Environment, 2011,409(13):2674-2684.
doi: 10.1016/j.scitotenv.2011.03.041
[65] Li X, Liu B, Wang X , et al. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates. Journal of Environmental Monitoring, 2012,14(3):1055-1063.
doi: 10.1039/c2em10378h
[66] 姜莹, 王柏凤, 周琳 , 等. 转EPSPS基因抗除草剂玉米‘CC-2’对土壤动物群落的短期影响. 植物保护, 2017,43(1):34-39.
doi: 10.3969/j.issn.0529-1542.2017.01.006
[1] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[2] 张文超,王玉凤,张翼飞,徐晶宇,吴琼,陈天宇,张鹏飞,庞晨,唐春双,付健,杨克军. 耕作方式对松嫩平原半干旱区土壤养分含量和玉米产量的影响[J]. 作物杂志, 2017, (4): 123–128
[3] 王金云,程宪国,郭继斌,王莉. 设施桃园土壤养分变化规律及评价[J]. 作物杂志, 2017, (3): 96–103
[4] 贾有余,任永峰,高宇,赵沛义,尹秀兰,李彬,蒙美丽. 内蒙古阴山北麓区不同土壤改良剂施用效果研究[J]. 作物杂志, 2017, (2): 130–134
[5] 焦悦,梁晋刚,翟勇. 转基因作物安全评价研究进展[J]. 作物杂志, 2016, (5): 1–7
[6] 王润莲,张志栋,刘景辉,刘慧军,赵宝平. 免耕不同处理对土壤养分、土壤酶活性及燕麦产量的影响[J]. 作物杂志, 2016, (3): 134–138
[7] 刘新颖,王柏凤,周琳,冯树丹,宋新元. 转cry1Ie基因抗虫玉米IE09S034种植对田间大型土壤动物多样性的影响[J]. 作物杂志, 2016, (1): 62–68
[8] 李瑞平, 郑金玉, 罗洋, 等. 鸡粪与立茬还田配合应用对土壤养分和玉米产量的影响[J]. 作物杂志, 2015, (6): 132–135
[9] 蔡丽君, 张敬涛, 刘婧琦, 等. 玉米一大豆免耕轮作体系玉米秸秆还田量对土壤养分和大豆产量的影响[J]. 作物杂志, 2015, (5): 107–110
[10] 马斌, 刘景辉, 张兴隆. 褐煤腐殖酸对旱作燕麦上壤微生物量碳、氮、磷含量及土壤酶活性的影响[J]. 作物杂志, 2015, (5): 134–140
[11] 张皓, 何腾兵, 林昌虎, 等. 不同轮作方式对黔产半夏土壤机械组成与养分含量的影响[J]. 作物杂志, 2015, (2): 101–106
[12] 李娟, 林位夫, 周立军. 成龄胶园间作不同薯类作物对土壤养分与土壤酶的影响[J]. 作物杂志, 2015, (1): 127–132
[13] 郭小强, 毛宁, 张希彪, 等. 不同施肥处理对辣椒根际土壤微生物区系和酶活性的影响[J]. 作物杂志, 2014, (6): 123–126
[14] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014, (5): 55–58
[15] 曹永强, 孙石. 回交在转基因作物育种中的应用[J]. 作物杂志, 2014, (1): 9–14
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .