作物杂志,2018, 第5期: 1–9 doi: 10.16035/j.issn.1001-7283.2018.05.001

• 专题综述 •    下一篇

作物耐热生理基础与基因发掘研究进展

吴昊1,2,李燕敏1,谢传晓1   

  1. 1 中国农业科学院作物科学研究所,100081,北京
    2 徽农业大学生命科学学院,230036,安徽合肥
  • 收稿日期:2018-04-19 修回日期:2018-08-21 出版日期:2018-10-15 发布日期:2018-10-12
  • 通讯作者: 谢传晓
  • 作者简介:吴昊,硕士,主要从事玉米分子育种研究
  • 基金资助:
    国家自然科学基金(31771808)

Research Advances on Physiological Basis and Gene Discovery for Thermal Tolerance in Crops

Wu Hao1,2,Li Yanmin1,Xie Chuanxiao1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2018-04-19 Revised:2018-08-21 Online:2018-10-15 Published:2018-10-12
  • Contact: Chuanxiao Xie

摘要:

热胁迫是农作物生产中的环境限制因子,影响作物生长发育并导致农作物减产与降低农产品品质。作物耐热性生理生化、基因发掘与分子机制研究将为农业生产与耐热新品种培育奠定基础。综述了热胁迫逆境对作物营养生长阶段和生殖生长阶段的影响,重点阐述了开花期与子粒灌浆期等作物产量形成关键时期受热害时作物的生理与发育,介绍了作物主要的4种热响应方式,即膜流动性改变、蛋白质解折叠、细胞骨架解聚和代谢物变化,总结了Hsf热激转录因子的调控与耐热分子机制,并展望了应用生物技术创制作物耐热新种质与遗传改良的可行性。本文为作物耐热性生理基础、基因发掘、分子机制与育种途径等研究提供参考。

关键词: 作物, 热胁迫, 生理响应, 热激转录因子, 耐热基因, 耐热种质

Abstract:

Thermal or heat stress is an environmental limiting factor in crop production which affects the growth and development of crops leading to yields reduction and lower quality of agricultural products. The research on physiology, biochemistry, gene discovery and molecular mechanism of plant heat resistance will lay the foundation for the agricultural production and breeding of the new varieties of heat tolerance. Thermal stress affecting on crops vegetative stage and reproductive stage, the anthesis and grain-filling stage that are critical for yield formation was reviewed in this paper. Four major kinds of the physiological thermal response, namely membrane fluidity change, protein unfolding, cytoskeleton depolymerization and metabolite change were introduced. The gene discovery of Hsf regulation under heat stress was summarized. We also prospected the genetic improvements, creating germplasm, and developing new biotechnology for heat tolerance in crops. This paper provides references for the study of physiological basis, gene discovery, molecular mechanism and breeding pathways for crop heat resistance.

Key words: Crop, Thermal stress, Physiological response, Heat shock transcription factor, Thermotolerance gene, Thermotolerance germplasm

[1] 沈永平, 王国亚 . IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013,35(5):1068-1076.
doi: 10.7522/j.issn.1000-0240.2013.0120
[2] Lobell D B, Schlenker W, Costa-Roberts J . Climate trends and global crop production since 1980. Science, 2011,333(6042):616-620.
doi: 10.1126/science.1204531
[3] Rosegrant M W, Agcaoili-Sombilla M, Perez N D . Food,agriculture and the environment discussion paper 5//Global food projections to 2020:Implications for investment, 1995: 2020-2054.
[4] Baker J T, Lhjr A, Boote K J . Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, 1990,115(3):313-320.
doi: 10.1017/S0021859600075729
[5] Asseng S, Ewert F, Rosenzweig C , et al. Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013,3(9):827-832.
doi: 10.1038/nclimate1916
[6] Savehenko G E, Klyuchareva E A, Abramchik L M , et al. Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 2002,49(3):349-359.
doi: 10.1023/A:1015592902659
[7] Shanahan J, Edwards I, Quick J , et al. Membrane thermostability and heat tolerance of spring wheat. Crop Science, 1990,30(2):247-251.
doi: 10.2135/cropsci1990.0011183X003000020001x
[8] Martineau J R, Specht J E, Williams J H , et al. Temperature tolerance in soybeans. I. evaluation of a technique for assessing cellular membrane thermostability. Crop Science, 1979(1):75-78.
[9] Blum A, Klueva N, Nguyen H T . Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 2001,117(2):117-123.
doi: 10.1023/A:1004083305905
[10] Ashraf M, Saeed M M, Qureshi M J . Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental & Experimental Botany, 1994,34(3):275-283.
[11] Marcum K B . Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Science, 1998,38(5):1214-1218.
doi: 10.2135/cropsci1998.0011183X003800050017x
[12] Ismail A M, Hall A E . Reproductive-stage heat tolerance,leaf membrane thermostability and plant morphology in cowpea. Crop Science, 1999,39(6):1762-1768.
doi: 10.2135/cropsci1999.3961762x
[13] Wahid A, Shabbir A . Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 2005,46(2):133-141.
doi: 10.1007/s10725-005-8379-5
[14] And G H K, Weis E . Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology, 1991,42(42):313-349.
doi: 10.1146/annurev.pp.42.060191.001525
[15] Karim M A, Fracheboud Y, Stamp P . Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum, 1999,105(4):685-693.
doi: 10.1034/j.1399-3054.1999.105413.x
[16] Saadalla M, Shanahan J, Quick J . Heat tolerance in winter wheat: I. Hardening and genetic effects on membrane thermostability. Crop Science, 1990,30(6):1243-1247.
doi: 10.2135/cropsci1990.0011183X003000060017x
[17] Fokar M, Nguyen H T, Blum A . Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica, 1998,104(1):1-8.
doi: 10.1023/A:1018346901363
[18] Blum A . Plant breeding for stress environments. Plant Breeding for Stress Environments, 1988.
[19] 赵龙飞, 李潮海, 刘天学 . 作物耐热性研究进展. 中国农学通报, 2012,28(9):11-15.
[20] Blum A, Ebercon A . Cell membrane stability as a measure of drought and heat tolerance in wheat1. Crop Science, 1981,21(1):43-47.
doi: 10.2135/cropsci1981.0011183X002100010013x
[21] 郭天财, 周继泽 . 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998,24(6):957-962.
[22] Wise R, Olson A, Schrader S , et al. Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant, Cell & Environment, 2004,27(6):717-724.
[23] Salvucci M E , Crafts-Brandner S J. Mechanism for deactivation of Rubisco under moderate heat stress. Physiologia Plantarum, 2004,122(4):513-519.
doi: 10.1111/ppl.2004.122.issue-4
[24] 陈思婷 . 拟南芥热激蛋白维持叶绿体类囊体膜稳定性及RNA结合蛋白RBP在植物耐热性中的作用机理研究. 中国科学院大学, 2016.
[25] Zhou R, Yu X, Kjær K H , et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental & Experimental Botany, 2015,118:1-11.
[26] 马晓娣, 彭惠茹, 汪矛 , 等. 作物耐热性的评价. 植物学报, 2004,21(4):411-418.
[27] Šebánek J. Plant Physiology . Elsevier Science, 1992.
[28] Rose M R . Evolutionary genetics and environmental stress. Science, 1991,254(5030):448-450.
[29] Walton D C . Biochemistry and physiology of abscisic acid. Annual Review of Plant Physiology, 1980,31(1):453-489.
doi: 10.1146/annurev.pp.31.060180.002321
[30] Ming G, Li Y J, Chen S Z . Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 1998,153(4):488-496.
doi: 10.1016/S0176-1617(98)80179-X
[31] 谭常, 俞子文, 杨惠东 , 等. 高温对两种植物组织乙烯产生的作用. 植物生理学报, 1988,14:373-379.
[32] Vettakkorumakankav N N, Falk D, Saxena P , et al. A crucial role for gibberellins in stress protection of plants. Plant and Cell Physiology, 1999,40(5):542-548.
doi: 10.1093/oxfordjournals.pcp.a029575
[33] Banowetz G, Ammar K, Chen D . Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Annals of Botany, 1999,83(3):303-307.
doi: 10.1006/anbo.1998.0823
[34] Dhaubhadel S, Chaudhary S, Dobinson K F , et al. Treatment with 24-epibrassinolide,a brassinosteroid,increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology, 1999,40(2):333-342.
doi: 10.1023/A:1006283015582
[35] Porter J R . Rising temperatures are likely to reduce crop yields. Nature, 2005,436(7048):174.
[36] Saini H, Aspinall D . Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Annals of Botany, 1982,49(6):835-846.
doi: 10.1093/oxfordjournals.aob.a086310
[37] Dupuis I, Dumas C . Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 1990,94(2):665-670.
doi: 10.1104/pp.94.2.665
[38] Guilioni L, Wery J, Tardieu F . Heat stress-induced abortion of buds and flowers in pea:is sensitivity linked to organ age or to relations between reproductive organs?. Annals of Botany, 1997,80(2):159-168.
doi: 10.1006/anbo.1997.0425
[39] Abiko M, Akibayashi K, Sakata T , et al. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 2005,18(2):91-100.
doi: 10.1007/s00497-005-0004-2
[40] Fischer R . Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science, 1985,105(2):447-461.
doi: 10.1017/S0021859600056495
[41] Prasad P, Boote K, Allen Jr L , et al. Species,ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006,95(2/3):398-411.
doi: 10.1016/j.fcr.2005.04.008
[42] Tewolde H, Fernandez C, Erickson C . Wheat cultivars adapted to post-heading high temperature stress. Journal of Agronomy and Crop Science, 2006,192(2):111-120.
doi: 10.1111/jac.2006.192.issue-2
[43] Blum A . Improving wheat grain filling under stress by stem reserve mobilisation//Wheat:Prospects for Global Improvement. Springer Netherlands, 1997.
[44] Yang J, Zhang J . Grain filling of cereals under soil drying. New Phytologist, 2006,169(2):223-236.
doi: 10.1111/nph.2006.169.issue-2
[45] Subrahmanyam D, Subash N, Haris A , et al. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006,44(1):125-129.
doi: 10.1007/s11099-005-0167-y
[46] Plaut Z, Butow B, Blumenthal C , et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 2004,86(2/3):185-198.
doi: 10.1016/j.fcr.2003.08.005
[47] Kobata T, Uemuki N . High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agronomy Journal, 2004,96(2):406-414.
doi: 10.2134/agronj2004.0406
[48] Setter T L, Flannigan B A . Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany, 2001,52(360):1401-1408.
doi: 10.1093/jexbot/52.360.1401
[49] Engelen-Eigles G, Jones R, Phillips R . DNA endoreduplication in maize endosperm cells is reduced by high temperature during the mitotic phase. Crop Science, 2001,41(4):1114-1121.
doi: 10.2135/cropsci2001.4141114x
[50] Triboï E, Martre P , Triboï-Blondel A M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany, 2003,54(388):1731-1742.
doi: 10.1093/jxb/erg183
[51] Altenbach S B, Kothari K M, Lieu D . Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chemistry, 2002,79(2):279-285.
doi: 10.1094/CCHEM.2002.79.2.279
[52] Vigh L, Nakamoto H, Landry J , et al. Membrane regulation of the stress response from prokaryotic models to mammalian cells. Annals of the New York Academy of Sciences, 2007,1113(1):40-51.
[53] Örvar B L, Sangwan V, Omann F , et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 2000,23(6):785-794.
doi: 10.1046/j.1365-313x.2000.00845.x
[54] Sangwan V, Foulds I, Singh J , et al. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton,and requires Ca 2+ influx . The Plant Journal, 2001,27(1):1-12.
doi: 10.1046/j.1365-313x.2001.01052.x
[55] Vaultier M-N, Cantrel C, Vergnolle C , et al. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Letters, 2006,580(17):4218-4223.
doi: 10.1016/j.febslet.2006.06.083
[56] Seo P J, Kim M J, Song J S , et al. Proteolytic processing of an Arabidopsis membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochemical Journal, 2010,427(3):359-367.
doi: 10.1042/BJ20091762
[57] Pastore A, Martin S R, Politou A , et al. Unbiased cold denaturation: low-and high-temperature unfolding of yeast frataxin under physiological conditions. Journal of the American Chemical Society, 2007,129(17):5374-5375.
doi: 10.1021/ja0714538
[58] von Koskull-Döring P, Scharf K-D, Nover L . The diversity of plant heat stress transcription factors. Trends in Plant Science, 2007,12(10):452-457.
doi: 10.1016/j.tplants.2007.08.014
[59] Yoshida T, Ohama N, Nakajima J , et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011,286(5/6):321-332.
doi: 10.1007/s00438-011-0647-7
[60] Sangwan V, Dhindsa R S . In vivo and in vitro activation of temperature‐responsive plant map kinases. FEBS Letters, 2002,531(3):561-564.
doi: 10.1016/S0014-5793(02)03626-8
[61] Matsuda O, Sakamoto H, Hashimoto T , et al. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial ω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. The Journal of Biological Chemistry, 2005,280(5):3597-3604.
doi: 10.1074/jbc.M407226200
[62] Malerba M, Crosti P, Cerana R . Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co 2+ . Protoplasma, 2010,239(1/4):23-30.
doi: 10.1007/s00709-009-0078-z
[63] Kaplan F, Kopka J, Haskell D W , et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 2004,136(4):4159-4168.
doi: 10.1104/pp.104.052142
[64] Vinocur B, Altman A . Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005,16(2):123-132.
doi: 10.1016/j.copbio.2005.02.001
[65] Ruelland E, Zachowski A . How plants sense temperature. Environmental and Experimental Botany, 2010,69(3):225-232.
doi: 10.1016/j.envexpbot.2010.05.011
[66] Suzuki N, Koussevitzky S, Mittler R , et al. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 2012,35(2):259-270.
[67] Miller G, Schlauch K, Tam R , et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2009, 2(84):ra45.
[68] Queitsch C, Hong S W, Vierling E , et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell, 2000,12(4):479-492.
doi: 10.1105/tpc.12.4.479
[69] Sato H, Mizoi J, Tanaka H , et al. Arabidopsis DPB3-1,a DREB2A interactor,specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. The Plant Cell, 2014,26(12):4954-4973.
doi: 10.1105/tpc.114.132928
[70] Charng Y Y, Liu H C, Liu N Y , et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology, 2007,143(1):251-262.
[71] Liu J, Sun N, Liu M , et al. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiology, 2013,162(1):512-521.
doi: 10.1104/pp.112.205864
[72] Srivastava R, Deng Y, Howell S H . Stress sensing in plants by an ER stress sensor/transducer,bZIP28. Frontiers in Plant Science, 2014,5:59.
[73] Shinozaki K, Yamaguchi-Shinozaki K . Molecular responses to cold,drought,heat and salt stress in higher plants. Landes Bioscience, 1999: 81-98.
[74] Yang K A, Lim C J, Hong J K , et al. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Science, 2006,171(1):175-182.
doi: 10.1016/j.plantsci.2006.03.013
[75] Iba K . Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology, 2002,53(1):225-245.
doi: 10.1146/annurev.arplant.53.100201.160729
[76] Lui J, Shono M . Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant and Cell Physiology, 1999,40(12):1297-1304.
doi: 10.1093/oxfordjournals.pcp.a029518
[77] Sanmiya K, Suzuki K, Egawa Y , et al. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters, 2004,557(1/2/3):265-268.
doi: 10.1016/S0014-5793(03)01494-7
[78] Richter K, Haslbeck M, Buchner J . The heat shock response:life on the verge of death. Molecular Cell, 2010,40(2):253-266.
doi: 10.1016/j.molcel.2010.10.006
[79] Mittler R, Blumwald E . Genetic engineering for modern agriculture:challenges and perspectives. Annual Review of Plant Biology, 2010,61:443-462.
doi: 10.1146/annurev-arplant-042809-112116
[80] Warren G . Spectacular increases in crop yields in the United States in the twentieth century. Weed Technology, 1998,12(4):752-760.
doi: 10.1017/S0890037X00044663
[81] Ashraf M A , Harris P J C,Ashraf M A,et al. Abiotic stresses:plant resistance through breeding and molecular approaches, 2005: 613-684.
[82] Li X M, Chao D Y, Wu Y , et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature genetics, 2015,47(7):827-833.
doi: 10.1038/ng.3305
[83] Ashraf M A , Harris P J C. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. USA,Binghamton:Food Products Press, 2005.
[84] Bohnert H J, Gong Q, Li P, Ma S . Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology, 2006,9(2):180-188.
doi: 10.1016/j.pbi.2006.01.003
[85] Maestri E, Klueva N, Perrotta C , et al. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 2002,48(5/6):667-681.
doi: 10.1023/A:1014826730024
[86] Liu N Y, Ko S S, Yeh K C , et al. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science, 2006,170(5):976-985.
doi: 10.1016/j.plantsci.2006.01.008
[87] Sun A Q, Yi S Y, Yang J Y , et al. Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Science, 2006,170(3):551-562.
doi: 10.1016/j.plantsci.2005.10.010
[88] Momcilovic I, Ristic Z . Expression of chloroplast protein synthesis elongation factor,EF-Tu,in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology, 2007,164(1):90-99.
doi: 10.1016/j.jplph.2006.01.010
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7
[2] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13–19
[3] 陈亮妹,李江遐,胡兆云,叶文玲,吴文革,马友华. 重金属低积累作物在农田修复中的研究与应用[J]. 作物杂志, 2018, (1): 16–24
[4] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[5] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[6] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[7] 周彤,陈雯,秦培亮,刘涛,孙成明. 作物水分智能管理研究进展[J]. 作物杂志, 2017, (5): 7–13
[8] 熊辉岩,段瑞君,王瑞生. 冷驯化影响越冬作物光合特性和株型特征的生理基础与分子机制的研究进展[J]. 作物杂志, 2017, (4): 21–26
[9] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[10] 李燕敏,祁显涛,刘昌林,刘方,谢传晓. 除草剂抗性农作物育种研究进展[J]. 作物杂志, 2017, (2): 1–6
[11] 陈霞燕,王连喜,任景全,郭春明,李琪,李莹莹. 吉林省春玉米生产潜力及其敏感性分析[J]. 作物杂志, 2016, (6): 91–98
[12] 焦悦,梁晋刚,翟勇. 转基因作物安全评价研究进展[J]. 作物杂志, 2016, (5): 1–7
[13] 张耗,杨建昌. 三种主要粮食作物的节水灌溉技术及其对产量和水分利用率的影响[J]. 作物杂志, 2016, (5): 67–74
[14] 秦东玲,李钊,尉菊萍,杨文一,白冰,刘宇龙,张倩,杨德光. 作物抗冷性及其化学控制机理研究进展[J]. 作物杂志, 2016, (4): 26–35
[15] 刘建光,王永强,赵贵元,赵俊丽,张寒霜. 重离子辐照诱变育种应用及其生物学效应研究进展[J]. 作物杂志, 2016, (3): 12–16
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .