作物杂志,2019, 第3期: 55–65 doi: 10.16035/j.issn.1001-7283.2019.03.010

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

大豆PHD家族蛋白的全基因组鉴定及表达特征分析

杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽   

  1. 黑龙江八一农垦大学农学院/作物逆境分子生物学实验室,163319,黑龙江大庆
  • 收稿日期:2018-10-30 修回日期:2019-02-27 出版日期:2019-06-15 发布日期:2019-06-12
  • 通讯作者: 孙晓丽
  • 作者简介:杨珺凯,硕士研究生,研究方向为作物遗传育种;
  • 基金资助:
    国家自然科学基金面上项目(31671596);中国博士后科学基金特别资助项目(2017T100253);黑龙江八一农垦大学研究生创新科研项目(YJSCX2017-Y08)

Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max

Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University/Crop Stress Molecular Biology Laboratory, Daqing 163319, Heilongjiang, China
  • Received:2018-10-30 Revised:2019-02-27 Online:2019-06-15 Published:2019-06-12
  • Contact: Xiaoli Sun

摘要:

PHD(Plant Homeodomain Finger)基因家族编码一类锌指转录因子,广泛参与植物的生长发育和逆境应答过程。通过全基因组鉴定获得了95个大豆PHD家族蛋白。通过共线性分析、进化树构建、基因结构和功能结构域鉴定、GO注释分析、不同组织间和非生物胁迫下表达分析等,获得了大豆PHD家族基因复制、家族进化、保守结构域及基因表达等信息。结果表明,大豆PHD基因在家族进化、基因结构和保守结构域上存在较大变异,可能参与Zn 2+结合、DNA结合及表观遗传调控等分子过程,参与调控植物生长发育和逆境应答。这些结果为进一步研究大豆PHD家族在生长发育和逆境应答中的生物学功能提供重要线索。

关键词: 大豆, PHD转录因子, PHD家族分析, 表达特征, 逆境胁迫

Abstract:

PHD (Plant Homeodomain Finger) family genes encode a class of zinc finger transcription factor proteins, which are widely involved in regulating plant growth and stress responses. In this study, through genome-wide analysis, we identified a total of 95 PHD family proteins in soybean proteome. We further performed the synteny analysis, constructed the phylogenic tree, identified the gene structures and functional domains, analyzed the gene ontology (GO) annotation, and investigated the expression patterns in different tissues and under abiotic stresses. These data provided comprehensive information regarding the gene duplication, family evolution, conserved domains and gene expression of the soybean PHD family. Our results presented in this study suggest that soybean PHD family displays a great divergence in family evolution, gene structure and conserved domain organization; possibly participates in different molecular processes, including Zn 2+ binding, DNA binding and epigenetic regulation; and probably controls plant development and environmental stress responses. In summary, these findings will provide a crucial cue for further characterizing the biological function of soybean PHD family in plant growth and environmental stress responses.

Key words: Soybean, PHD transcription factor, Gene family analysis, Expression patterns, Environmental stress

图1

大豆PHD家族蛋白PHD结构域氨基酸序列比对"

图2

大豆PHD家族基因染色体定位和基因复制分析"

图3

大豆PHD家族基因进化关系分析"

图4

大豆PHD家族基因结构分析"

图5

大豆PHD家族蛋白保守结构域分析"

图6

大豆PHD家族基因本体映射"

图7

大豆PHD家族基因组织表达特性分析"

图8

大豆PHD家族基因在逆境胁迫下的表达模式分析"

[1] 韩丹, 王丕武, 曲静 , 等. 大豆C2H2型锌指蛋白基因SCTF-1转化及功能分析. 中国油料作物学报, 2016,38(3):307-312.
doi: 10.7505/j.issn.1007-9084.2016.03.006
[2] Agarwal P, Arora R, Ray S , et al. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 2007,65(4):467-485.
doi: 10.1007/s11103-007-9199-y
[3] Hall T M . Multiple modes of RNA recognition by zinc finger proteins. Current Opinion in Structure Biology, 2005,15(3):367-373.
doi: 10.1016/j.sbi.2005.04.004
[4] Arnaud D, Dejardin A, Leple J G , et al. Genome-wide analysis of LIM gene family in Populus trichocarpa,Arabidopsis thaliana,and Oryza sativa. DNA Research, 2007,14(3):103-116.
doi: 10.1093/dnares/dsm013
[5] Takatsuji H . Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences, 1998,54:582-596.
doi: 10.1007/s000180050186
[6] Aasland R, Gibson T J, Stewart A F . The PHD finger:Implications for chromatin-mediated transcriptional regulation. Trends in Biochemical Sciences, 1995,20:56-59.
doi: 10.1016/S0968-0004(00)88957-4
[7] Borden K L B, Freemont S P . The ring finger domain:A recent example of a sequence-structure family. Current Opinion in Structural Biology, 1996,6:395-401.
doi: 10.1016/S0959-440X(96)80060-1
[8] Kaadige M R, Ayer D E . The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. Journal of Biological Chemistry, 2006,281(39):28831-28836.
doi: 10.1074/jbc.M605624200
[9] 冯英, 刘庆坡, 薛庆中 . 水稻与拟南芥PHD-finger蛋白的系统分析. 遗传学报, 2004,31(11):1284-1293.
[10] Wang Q, Liu J, Wang Y , et al. Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response. International Journal of Molecular Sciences, 2015,16(10):23517-23544.
doi: 10.3390/ijms161023517
[11] Wu S, Wu M, Dong Q , et al. Genome-wide identification,classification and expression analysis of the PHD-finger protein family in Populus trichocarpa. Gene, 2016,575(1):75-89.
doi: 10.1016/j.gene.2015.08.042
[12] Sun M Z, Jia B W, Yang J K , et al. Genome-wide identification of the PHD-finger family genes and their responses to environmental stresses in Oryza sativa L. International Journal of Molecular Sciences, 2017,18(9):2005.
doi: 10.3390/ijms18092005
[13] Chen X J, Sikandar H, Cheng Z H . Genome-wide identification and analysis of genes encoding PHD-finger protein in tomato. Pakistan Journal of Botany, 2016,48(1):155-165.
[14] Wu X J, Li M Y, Que F , et al. Genome-wide analysis of PHD family transcription factors in carrot (Daucus carota L.) reveals evolution and response to abiotic stress. Acta Physiologiae Plantarum, 2016,38(3):2049-2061.
[15] 张帆, 杨仲南, 张森 . 拟南芥PHD-finger-蛋白家族的全基因组分析. 云南植物研究, 2009,31(3):227-238.
[16] Ye Y, Gong Z, Lu X , et al. Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination. Plant Journal, 2016,85(1):3-15.
doi: 10.1111/tpj.13086
[17] Kim D H, Sung S . The binding specificity of the PHD-finger domain of VIN3 moderates vernalization response. Plant Physiology, 2017,173(2):1258-1268.
doi: 10.1104/pp.16.01320
[18] Fernandez Gomez J, Wilson Z A . A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnology Journal, 2014,12(6):765-777.
doi: 10.1111/pbi.2014.12.issue-6
[19] Lopez-Gonzalez L, Mouriz A, Narro-Diego L , et al. Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins. The Plant Cell, 2014,26(10):3922-3938.
doi: 10.1105/tpc.114.130781
[20] Wei W, Huang J, Hao Y J , et al. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE, 2009,4(9):e7209.
doi: 10.1371/journal.pone.0007209
[21] Wu T, Pi E X, Tsai S N , et al. GmPHD5 acts as an important regulator for crosstalk between histone H3K4 di-methylation and H3K14 acetylation in response to salinity stress in soybean. BMC Plant Biology, 2011,11:178.
doi: 10.1186/1471-2229-11-178
[22] Zhang H, Meltzer P, Davis S . RCircos:an R package for Circos 2D track plots. BMC Bioinformatics, 2013,14:244.
doi: 10.1186/1471-2105-14-244
[23] 李晓旭, 刘成, 李伟 , 等. 番茄WOX转录因子家族的鉴定及进化、表达分析. 遗传, 2016,38(5):444-460.
[24] Schmutz J, Cannon S B, Schlueter J , et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010,463:178-183.
doi: 10.1038/nature08670
[25] Winicov I . Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 2000,210(3):416-422.
doi: 10.1007/PL00008150
[26] Winicov I I, Bastola D R . Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiology, 1999,120(2):473-480.
doi: 10.1104/pp.120.2.473
[27] Robert-Seilaniantz A, Grant M, Jones J D . Hormone crosstalk in plant disease and defense:more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 2011,49:317-343.
doi: 10.1146/annurev-phyto-073009-114447
[28] Callebaut I, Courvalin J C, Mornon J P . The BAH (bromo-adjacent homology) domain:a link between DNA methylation,replication and transcriptional regulation. FEBS Letters, 1999,446(1):189-193.
doi: 10.1016/S0014-5793(99)00132-5
[29] Oliver A W, Jones S A, Roe S M , et al. Crystal structure of the proximal BAH domain of the polybromo protein. Biochemical Journal, 2005,389(3):657-664.
doi: 10.1042/BJ20050310
[30] Baumbusch L O, Thorstensen T, Krauss V , et al. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research, 2001,29(21):4319-4333.
doi: 10.1093/nar/29.21.4319
[31] Cui X, De Vivo I, Slany R , et al. Association of SET domain and myotubularin-related proteins modulates growth control. Nature Genetics, 1998,18(4):331-337.
doi: 10.1038/ng0498-331
[32] Stec I, Nagl S B, van Ommen G J , et al. The PWWP domain:a potential protein-protein interaction domain in nuclear proteins influencing differentiation. FEBS Letters, 2000,473(1):1-5.
doi: 10.1016/S0014-5793(00)01449-6
[33] Qin S, Min J R . Structure and function of the nucleosome-binding PWWP domain. Trends in Biochemical Sciences, 2014,39(11):536-547.
doi: 10.1016/j.tibs.2014.09.001
[34] Molitor A M, Bu Z Y, Yu Y , et al. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genetics, 2014,10(1):e1004091.
doi: 10.1371/journal.pgen.1004091
[1] 代希茜,詹和明,崔兴洪,赵银月,单丹丹,张亮,王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究[J]. 作物杂志, 2019, (2): 128–135
[2] 林春雨,梁晓宇,赵慧艳,王洋. 黑龙江省主栽大豆品种遗传多样性和群体结构分析[J]. 作物杂志, 2019, (2): 78–83
[3] 刘博,卫玲,肖俊红,杨海峰,段学艳,陈爱萍,任瑞兰. 关于提高大豆杂交结实率的研究[J]. 作物杂志, 2019, (1): 81–84
[4] 李悦,李海燕,于吉东,邓杰,宫远福,朱俊澍. 线麻秸秆浸提液对大豆的化感作用[J]. 作物杂志, 2019, (1): 175–179
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[6] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[7] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156–159
[8] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152–155
[9] 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 37–44
[10] 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 1–5
[11] 周学超,丁素荣,魏云山,周艳芳,魏学,娜日娜,李峰. 不同鲜食大豆品种(系)在赤峰地区的适应性评价[J]. 作物杂志, 2017, (3): 44–48
[12] 任国勇,李伟,张礼凤,王彩洁,戴海英,王金龙,徐冉,张彦威. 转HarpinXooc蛋白编码基因hrf2大豆的胞囊线虫病1号小种抗性鉴定[J]. 作物杂志, 2017, (3): 49–53
[13] 张旭丽,邢宝龙,王桂梅,殷丽丽. 密度对晋北区大豆农艺性状、经济性状及产量的影响[J]. 作物杂志, 2017, (3): 127–131
[14] 张喜亭,曹立为,吕书财,陈国兴,王永吉,于舒函,龚振平. 黑土容重对大豆氮素吸收及产量的影响[J]. 作物杂志, 2017, (3): 132–137
[15] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1 –7 .
[2] 张萌,芶久兰,魏全全,陈龙,何佳芳. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响[J]. 作物杂志, 2019, (3): 132 –136 .
[3] 付景,孙宁宁,刘天学,马俊峰,杨豫龙,赵霞,穆心愿,李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019, (3): 118 –125 .
[4] 权宝全,吕瑞洲,王贵江,任杰成. 薯块膨大中期不同栽培措施对甘薯生长发育及产量的影响[J]. 作物杂志, 2019, (3): 158 –161 .
[5] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24 –28 .
[6] 张自强,王良,白晨,张惠忠,李晓东,付增娟,赵尚敏,鄂圆圆,张辉,张必周. 104份甜菜种质资源主要农艺性状分析[J]. 作物杂志, 2019, (3): 29 –36 .
[7] 马名川,刘龙龙,张丽君,崔林,周建萍. EMS诱变刺荞的形态突变体鉴定与分析[J]. 作物杂志, 2019, (3): 37 –41 .
[8] 范惠玲,白生文,朱雪峰,李振洲,秦明岗,何志军. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019, (3): 178 –184 .
[9] 叶文斌,何玉鹏,王昱,王瀚,赵庆芳. 碱化橄榄油加工废弃液对玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2019, (3): 185 –191 .
[10] 王永刚,姬铭泽,赵旭涵,于立河,薛盈文. 播期对白燕7号在黑龙江省中西部地区产量的影响[J]. 作物杂志, 2019, (3): 106 –111 .