作物杂志,2019, 第3期: 73–79 doi: 10.16035/j.issn.1001-7283.2019.03.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

农杆菌介导谷子成熟胚遗传转化体系的建立与优化

李颜方,杜艳伟,张正,王高鸿,赵根有,赵晋锋,余爱丽   

  1. 山西省农业科学院谷子研究所,046011,山西长治
  • 收稿日期:2018-11-15 修回日期:2018-12-21 出版日期:2019-06-15 发布日期:2019-06-12
  • 通讯作者: 赵晋锋
  • 作者简介:李颜方,助理研究员,研究方向为遗传育种;
  • 基金资助:
    国家现代农业技术体系项目(CARS-06-13.5-A23);山西省农业科学院科技自主创新能力提升工程项目(2017ZZCX-09);山西省农业科学院特色农业技术攻关(YGG17021);山西省农业科学院农业科技创新项目(YCX2018206)

Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet

Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, Shanxi, China
  • Received:2018-11-15 Revised:2018-12-21 Online:2019-06-15 Published:2019-06-12
  • Contact: Jinfeng Zhao

摘要:

为建立一个稳定的谷子遗传转化体系,对216份谷子种质资源进行筛选,确定材料178成熟胚为受体材料,从植物激素浓度、防褐化剂、农杆菌菌液浓度、侵染时间、乙酰丁香酮(AS)浓度等方面对谷子再生及转化体系进行优化。结果表明,在MS培养基中加入生长素2,4-D 9μmol/L、细胞分裂素Kinetin 4μmol/L、硝酸银8mg/L,愈伤组织诱导率最高且能有效防止褐化。在侵染液和共培养基中加入100μmol/L AS,gus表达效果最好。农杆菌溶液OD600为0.3~0.5,侵染15min,共培养3d时,抗性愈伤组织率最高。获得的转基因植株,经PCR检测及gus染色分析,确定外源bar基因已成功整合到谷子基因组中。初步建立了一套谷子遗传转化体系,为今后谷子遗传转化提供一些参考。

关键词: 谷子, 农杆菌, 成熟胚, 遗传转化, 愈伤组织

Abstract:

In this study, we developed the foxtail millet in vitro transformation system by using Agrobacterium mediated based on screening 216 foxtail millet varieties to obtain high quality embryo callus. Calli induced from mature seeds of variety 178 as explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA 3301 which contained β-glucuronidase (gus) as the reporter gene, transformed into embryogenic callus for optimizing transformation conditions. For infection with Agrobacterium, calluses derived from shoot apex explants were prepared and submerged in bacterial suspension for different durations, meanwhile the concentration of AS in co-cultivation medium was optimized. Resistant calli were gained by selecting them on a medium containing phosphinothricin and kanamycin. Transformed plants were obtained from the resistant calli after differentiation and regeneration. The target gene was detected by gus activity assay and PCR analysis of bar gene. These results indicated the foreign gene has been integrated into the genome of millet and can be effectively expressed.

Key words: Foxtail millet, Agrobacterium, Mature embryos, Genetic transformation, Callus

表1

试验所用的培养基"

培养基Media 培养基组分Medium composition
愈伤组织诱导培养基(A)
Calli inducing medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
8mg/L AgNO3+4g/L植物凝胶,pH 5.8
分化培养基(B)
Differential medium
MS培养基+2.0mg/L Kinetin+20g/L麦芽糖+7g/L Phytoblend(植物凝胶类似物),pH 5.8
农杆菌悬浮侵染培养基(C)
Suspending medium
MS培养基+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+100μmol/L乙酰丁香酮(AS)+1g/L泊洛沙姆,pH 5.8
共培养基(D)
Co-cultural medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
100μmol/L AS+1g/L泊洛沙姆+4g/L植物凝胶,pH 5.8
筛选分化培养基(E)
Screening and differentiation medium
分化培养基+150mg/L特美汀+5mg/L草丁膦,pH 5.8
筛选再生培养基(F)
Screening and regeneration medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
4g/L植物凝胶+150mg/L特美汀+10mg/L草丁膦,pH 5.8
生根培养基(G)
Rooting medium
1/2 MS培养基+30g/L蔗糖+7g/L Phytoblend,pH 5.7

表2

适宜组织培养的谷子基因型"

材料编号
Material code
基因型
Genotype
发芽率
Rate of germination
愈伤组织诱导率
Rate of callus induction
抗性愈伤组织率
Rate of resistance callus
gus表达率
Rate of gusexpression
19 豫谷1号Yugu 1 83.5 84.2 32.6 11.4
50 长农35 Changnong 35 80.5 83.1 35.8 25.3
63 长生06 Changsheng 06 68.5 85.3 18.9 7.5
125 长生07 Changsheng 07 80.5 81.7 24.6 19.2
129 沁州黄Qinzhouhuang 96.6 87.2 12.6 3.9
164 冀谷11 Jigu 11 78.4 72.6 48.7 35.3
168 金谷1号Jingu 1 91.5 86.8 34.2 19.5
178 晋谷21 Jingu 21 82.6 79.6 42.5 38.9

图1

AgNO3浓度对愈伤组织生长状态的影响"

图2

2,4-D浓度对愈伤组织生长状态的影响"

图3

Kinetin浓度对愈伤组织生长状态的影响"

图4

菌液浓度对转化结果的影响"

图5

侵染时间对转化结果的影响"

图6

AS浓度对转化结果的影响"

图7

谷子转化植株bar基因检测结果 性对照;2:阴性对照;3~11:不同转化株系"

[1] 智慧, 牛振刚, 贾冠清 , 等. 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012,38(5):800-807.
doi: 10.3724/SP.J.1006.2012.00800
[2] Jayaraman A, Puranik S, Rai N K , et al. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology, 2008,40:241-251.
doi: 10.1007/s12033-008-9081-4
[3] Muthamilarasan M, Prasad M . Advances in setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics, 2015,128(1):1-14.
doi: 10.1007/s00122-014-2399-3
[4] Taylor M, Vasil I K . GUS gene expression in cereal cell suspensions and immature embryos using the maize ubiquiton-based plasmid pAHC25. Plant Cell Reports, 1993,12:491-495.
[5] 许智宏, 夏镇澳 . 谷子与狗尾草的组织培养. 植物生理学通讯, 1983(2):12-13.
[6] 刁现民, 段胜军, 陈振玲 , 等. 谷子体细胞无性系变异分析. 中国农业科学, 1999,32(3):21-26.
[7] 赵连元, 纪芸, 段胜军 . 谷子原生质体植株再生研究. 华北农学报, 1990(5):27-29.
[8] 王永芳, 李伟, 刁现民 . 根癌农杆菌共培养转化谷子技术体系的建立. 河北农业科学, 2003,7(4):1-6.
[9] 袁进成, 刘颖慧, 董志平 , 等. 谷子成熟胚诱导愈伤组织及植株再生的研究和条件的优化. 生物技术通报, 2013(3):77-82.
[10] 刘颖慧, 于静娟, 赵倩 , 等. 根癌农杆菌介导谷子的遗传转化. 农业生物技术学报, 2005,13(1):32-37.
[11] Jefferson R A . Assaying chimerical gene sin plants:the GUS gene fusion system. Plant Molecular Biology Reports, 1987,11:38-47.
[12] 魏开发, 刘逸萍, 林子英 , 等. 农杆菌介导单子叶植物遗传转化问题与对策. 植物学通报, 2008,25(4):491-496.
[13] Zhang Y M, Linghu J J, Wang D , et al. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24,modulates plant salt stress tolerance. Plant Molecular Biology Reporter, 2017,35:634-646.
doi: 10.1007/s11105-017-1051-1
[14] Lakkakula S, Periyasamy R, Arokiam S R , et al. Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana). Journal of Applied Phycology, 2016,28:2083-2098.
doi: 10.1007/s10811-015-0696-0
[15] 赵巧阳, 赖钟雄 . 硝酸银在离体培养和转化中的作用及其机理. 亚热带农业研究, 2008,4(1):62-66.
[16] 王景雪, 孙毅, 胡晶晶 , 等. 玉米自交系高频率再生因素研究. 作物学报, 2004,30(6):398-402.
[17] 王文星, 屈山, 曹成有 , 等. 硝酸银对离体培养烟草叶片愈伤组织形成和芽再生及其脯氨酸和丙二醛含量的影响. 植物生理学通讯, 2006,42(4):668-670.
[18] 孔维龙, 王翠, 但乃震 , 等. 根癌农杆菌介导的香石竹遗传转化体系建立. 中国农业大学学报, 2018,23(4):34-44.
[19] 朱军, 韩锁义, 袁美 , 等. 农杆菌介导的花生遗传转化条件优化. 中国油料作物学报, 2018,40(2):191-198.
[20] Shweta B, Suresh K . Agrobacterium-mediated transient GUS gene expression in buffel grass (Cenchrus ciliaris L.). Journal of Application Genetics, 2003,44:449-458.
[21] Smith R, Hood E . Agrobacterium tumefaciens transformation of monocotyledons. Crop Science, 1995,35:301-309.
doi: 10.2135/cropsci1995.0011183X003500020001x
[22] Stachel S E, Messens E, Montagu M , et al. Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985,318:624-629.
doi: 10.1038/318624a0
[23] Cheng M, Lowe B A, Speneer T M , et al. Factors in flueneing Agrobacterium-mediated transformation of monoeotyledonous speeies. In Vitro Cellular & Developmental Biology-Plant, 2004,40:31-45.
doi: 10.1079/IVP2003501
[24] Shrawat A K, Lorz H . Agrobacterium-mediated transformation of cereals:a promising approach crossing barriers. Plant Biotechnology Journal, 2006,4:575-603.
doi: 10.1111/pbi.2006.4.issue-6
[25] Hensel G, Valkov V, Kumlehn J , et al. Efficient generation of transgenic barley:the way forward to modulate plant microbe interactions. Journal of Plant Physiology, 2008,165:71-82.
doi: 10.1016/j.jplph.2007.06.015
[26] Ishida Y, Tsunashima M, Hiei Y , et al. Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobacterium Protocols, 2015,1223:189-198.
doi: 10.1007/978-1-4939-1695-5
[27] Lakkakula S, Arokiam S R, Ceasar S A , et al. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell Tissue and Organ Culture, 2016,124(1):15-31.
doi: 10.1007/s11240-015-0870-8
[28] 李颜方, 赵晋锋, 王高鸿 , 等. 农杆菌介导谷子遗传转化的研究进展. 中国农学通报, 2016,32(36):66-72.
[29] Sweta D, Chawla H S . In vitro plant regeneration and transformation studies in millets:current status and future prospects. India Journal of Plant Physiology, 2016,21(3):239-254.
doi: 10.1007/s40502-016-0240-5
[30] Ceasar S A, Ignacimuthu S, Coll L , et al. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Report, 2011,30:1759-1770.
doi: 10.1007/s00299-011-1084-0
[31] Martins P K, Ribeiro A P, Dias B A , et al. A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnology Reports, 2015,6:41-44.
doi: 10.1016/j.btre.2015.02.002
[32] Pooja J, Rustagi A, Agnihotri P K , et al. Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue and Organ Culture, 2011,107:501-512.
doi: 10.1007/s11240-011-0001-0
[33] Saha P, Blumwald E . Spike-dip transformation of Setaria viridis. The Plant Journal, 2016,86(1):89-101.
doi: 10.1111/tpj.2016.86.issue-1
[34] Lakkakula S, Periyasamy R, Ceasar S A , et al. Effects of cefotaxime,amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cellular & Developmental Biology-Plant, 2016,52(2):140-153.
[35] Van E J, Swartwood K, Pidgeon K , et al. Agrobacterium tumefaciens-mediated transformation of Setaria viridis. Plant Genetics and Genomics, 2017,19:343-356.
[36] Zhang X, Henriques R, Lin S S , et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006,1(2):641-646.
doi: 10.1038/nprot.2006.97
[37] Martins P K, Nakayama T J, Ribeiro A P , et al. Setaria viridis floral-dip:a simple and rapid Agrobacterium mediated transformation method. Biotechnology Reports, 2015,6:61-63.
doi: 10.1016/j.btre.2015.02.006
[1] 刘韶光,赵夏童,宋喜娥,原向阳,董淑琦,郭美俊,郭平毅. 膜间喷施芽前除草剂对谷子安全性及对杂草防效的影响[J]. 作物杂志, 2019, (2): 173–178
[2] 杜艳伟,赵晋锋,王高鸿,李颜方,赵根有,阎晓光. 春播谷子成熟期抗倒伏性研究[J]. 作物杂志, 2019, (1): 141–145
[3] 王小林,纪晓玲,张盼盼,张雄,张静. 黄土高原旱地谷子品种地上器官干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[4] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42–47
[5] 李志华,穆婷婷,刘鑫,李会霞,田岗. 4个谷子不育系主要农艺性状的配合力分析[J]. 作物杂志, 2018, (3): 61–67
[6] 岳茂林,薛蔚荣,张瑞栋,岳忠孝,吕瑞洲,郭鹏燕. 不同行距配置对谷子农艺性状及产量的影响[J]. 作物杂志, 2018, (2): 93–96
[7] 张微,王良群,刘勇,郝艳芳,杨伟,白鸿雁,武擘. 农杆菌介导高粱遗传转化的相关因素优化[J]. 作物杂志, 2018, (1): 56–61
[8] 孙冬雪,张爱军. 底施锌肥对谷子抗氧化性及干物质的影响[J]. 作物杂志, 2017, (6): 160–164
[9] 郭瑞锋,张永福,任月梅,杨忠. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选[J]. 作物杂志, 2017, (4): 63–66
[10] 宋国亮,冯小磊,范光宇,史高雷,李双东,王峰,王晓明,赵治海. 谷子新不育系的配合力分析[J]. 作物杂志, 2017, (2): 44–50
[11] 代小冬,朱灿灿,秦娜,杨育峰,王雁楠,杨国红,司冰,刘诗慧,李君霞. 烯效唑和密度对谷子产量及产量相关性状的影响[J]. 作物杂志, 2017, (2): 104–108
[12] 邱双,闫双堆,刘利军. 不同谷子品种耐低磷能力研究[J]. 作物杂志, 2017, (2): 139–144
[13] 赵丽娟,马金丰,李延东,李祥羽,李志江,袁红梅,郭文栋. 60Co-γ射线辐射谷子干种子诱变效应的研究[J]. 作物杂志, 2017, (1): 38–43
[14] 穆婷婷,杜慧玲,景小兰,李志华,郭琦,田岗,李会霞,刘璋. 外源硒对谷子产量因子及硒含量的影响[J]. 作物杂志, 2017, (1): 73–78
[15] 李志华,景小兰,李会霞,田岗,刘鑫,穆婷婷. 谷子苗期除草剂的安全性及杂草防效研究[J]. 作物杂志, 2017, (1): 150–154
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1 –7 .
[2] 张萌,芶久兰,魏全全,陈龙,何佳芳. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响[J]. 作物杂志, 2019, (3): 132 –136 .
[3] 付景,孙宁宁,刘天学,马俊峰,杨豫龙,赵霞,穆心愿,李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019, (3): 118 –125 .
[4] 权宝全,吕瑞洲,王贵江,任杰成. 薯块膨大中期不同栽培措施对甘薯生长发育及产量的影响[J]. 作物杂志, 2019, (3): 158 –161 .
[5] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24 –28 .
[6] 张自强,王良,白晨,张惠忠,李晓东,付增娟,赵尚敏,鄂圆圆,张辉,张必周. 104份甜菜种质资源主要农艺性状分析[J]. 作物杂志, 2019, (3): 29 –36 .
[7] 马名川,刘龙龙,张丽君,崔林,周建萍. EMS诱变刺荞的形态突变体鉴定与分析[J]. 作物杂志, 2019, (3): 37 –41 .
[8] 范惠玲,白生文,朱雪峰,李振洲,秦明岗,何志军. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019, (3): 178 –184 .
[9] 叶文斌,何玉鹏,王昱,王瀚,赵庆芳. 碱化橄榄油加工废弃液对玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2019, (3): 185 –191 .
[10] 王永刚,姬铭泽,赵旭涵,于立河,薛盈文. 播期对白燕7号在黑龙江省中西部地区产量的影响[J]. 作物杂志, 2019, (3): 106 –111 .