作物杂志,2019, 第4期: 10–16 doi: 10.16035/j.issn.1001-7283.2019.04.002

• 专题综述 • 上一篇    下一篇

大豆抗病分子标记的研究进展

刘念析,陈亮,厉志,刘宝泉,刘佳,衣志刚,董志敏,王曙明   

  1. 吉林省农业科学院大豆研究所,130033,吉林长春
  • 收稿日期:2019-04-01 修回日期:2019-06-17 出版日期:2019-08-15 发布日期:2019-08-06
  • 通讯作者: 董志敏
  • 作者简介:刘念析,助理研究员,从事大豆抗病育种研究工作
  • 基金资助:
    吉林省农业科技创新工程(人才基金)-博士后基金(C82230410)

Advances in Molecular Markers of Soybean Disease Resistance

Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming   

  1. Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
  • Received:2019-04-01 Revised:2019-06-17 Online:2019-08-15 Published:2019-08-06
  • Contact: Zhimin Dong

摘要:

大豆(Glycine max L.)病害是影响大豆产量和品质的重要因素之一,随着大豆全基因组序列的公布,以SNP为代表的新一代分子标记技术使大豆抗病分子标记辅助育种得以快速发展。本文综述了2010年以来研究者们对大豆抗性基因的定位方法、抗病基因的定位、候选基因的筛选及鉴定等所取得的新进展,并结合当前大豆抗病分子标记的现状提出了新的发展方向,为进一步探究相关抗病基因的功能及分子育种提供理论参考。

关键词: 大豆, 抗病, 分子标记

Abstract:

Soybean (Glycine max L.) disease is one of the most important factors affecting soybean yield and quality. With the publication of the whole genome sequence of soybean, SNP as a new generation of molecular marker has been effectively applied in resistance molecular marker-assisted breeding. This article reviews the progress made by researchers with mapping methods, resistance genes localization, screening and identification of candidate genes for soybean disease resistance since 2010. This review could provide a helpful reference for further functional analysis of resistance-related genes and molecular breeding in soybean.

Key words: Soybean, Disease resistance, Molecular markers

表1

2010年以来部分大豆花叶病毒分子标记"

基因名称Gene name 亲本Parents 染色体Chromosome 分子标记Molecular marker 参考文献Reference
Rsc15 RN-9×7605 6 Sat_213-Sat_286 [15,17]
Rsc7 Kefeng 1×Nannong 1138-2 2 BARCSOYSSR_02_0621-BARCSOYSSR_02_0632 [18]
Rsc8 Kefeng 1×Nannong 1138-2 2 ZL-42-ZL-52 [19]
Rsc3Q Qihuang 1×Nannong 1138-2 13 BARCSOYSSR_13_1114-BARCSOYSSR_13_1136 [20]
Rsc4 Dabaima×Nannong 1138-2 14 BARCSOYSSR_14_1413-BARCSOYSSR_14_1416 [21]
Rsc3/Rsc6/Rsc17 PI96983×Nannong 1138-2 13 BARCSOYSSR_13_1114-BARCSOYSSR_13_1136 [22]
Rsc7 PI96983×Nannong 1138-2 13 BARCSOYSSR_13_1140-BARCSOYSSR_13_1185 [22]
Rsc14Q Qihuang 1×Nannong 1138-2 13 MY525-MY750 [23]
Rsc18 Kefeng 1×Nannong 1138-2 2 BARCSOYSSR_02_0667-BARCSOYSSR_02_0670 [24]
Rsc18 Qihuang 22×Nannong 1138-2 13 SOYHSP176-Satt334 [24]
Rsc20 Qihuang 1×Nannong 1138-2 13 SSR_13-14-GM_INDEL_13-3 [25]
Rsv1-h Suweon 97×Williams 82 13 BARCSOYSSR_13_1114-BARCSOYSSR_13_1115 [26]

表2

2010年以来部分大豆疫霉根腐病分子标记"

基因名称Gene name 亲本Parents 染色体Chromosome 分子标记Molecular marker 参考文献Reference
RpsUN1 Williams×PI 567139B 3 BARCSOYSSR_03_0233-BARCSOYSSR_03_0246 [30]
RpsUN2 Williams×PI 567139B 16 CAPS6-SNP2 [30]
Rps10 Wandou 15×Williams 17 Sattwd15-24/25-Sattwd15-47 [31]
Rsp11 Williams×PI 594527 7 BARCSOYSSR_07_0286-BARCSOYSSR_07_0300 [32]
RpsHC18 Jikedou 2×Huachun 18 3 BARCSOYSSR_03_0267-BARCSOYSSR_03_0269 [33]
RpsJS Nannong 10-1×06-070583 18 SOYSSR_18_1859-SSRG60752K [34]
RpsWY Huachun 2×Wayao 3 bin401 [35]
[1] 韩立德, 盖钧镒, 张文明 . 大豆营养成分研究现状. 种子, 2003(5):57-59.
[2] 王艳, 韩英鹏, 李文滨 . 大豆分子标记研究新进展. 大豆科学, 2015,34(1):148-162.
[3] Martin T, Nikolai A, Mugford S G , et al. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biology, 2012,12(1):12-14.
[4] Liu W Y, Kang J H, Jeong H S , et al. Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theoretical and Applied Genetics, 2014,127(11):2503-2513.
[5] Wu J, Wang Q, Xu L , et al. Combining SNP genotyping array with bulked segregant analysis to map a gene controlling adult-plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology, 2017,108(1):103-113.
[6] Zhang X, Li R, Chen L , et al. Fine-mapping and candidate gene analysis of the Brassica juncea white-flowered mutant Bjpc2 using the whole-genome resequencing. Molecular Genetics and Genomics, 2017,293(2):359-370.
[7] Han Y, Zhao F, Gao S , et al. Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theoretical and Applied Genetics, 2018,131(3):449-460.
[8] 张红, 王超楠, 黄志银 , 等. 近等基因系构建及其在育种中应用综述. 中国园艺文摘, 2018,34(6):54-56.
[9] Kobayashi T, Yamamoto K, Suetsugu Y , et al. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens. Proceedings Biological Sciences, 2014,281:296-306.
[10] Chung C L, Poland J, Kump K , et al. Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theoretical and Applied Genetics, 2011,123(2):307-326.
[11] Warrington C V, Zhu S, Parrott W A , et al. Seed yield of near-isogenic soybean lines with introgressed quantitative trait loci conditioning resistance to corn earworm (lepidoptera: noctuidae) and soybean looper (lepidoptera: noctuidae) from PI 229358. Journal of Economic Entomology, 2008,101(4):1471-1477.
[12] Zheng Z, Ma J, Stiller J , et al. Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat. BMC Genomics, 2015,16(1):1-7.
[13] Cho E K, Goodman R M . Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivars. Phytopathology, 1979,69(5):467-470.
[14] Yulho K, Oksun K, Bongchoon L , et al. G7H,a new soybean mosaic virus strain: its virulence and nucleotide sequence of CI gene. Plant Disease, 2003,87(11):1372-1375.
[15] Yang Q H, Gai J Y . Identification,inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SC15 in soybean. Plant Breeding, 2011,130(2):128-132.
[16] Wang D, Zhao L, Li K , et al. Marker-assisted pyramiding of soybean resistance genes RSC4,RSC8,and RSC14Q to soybean mosaic virus. Journal of Integrative Agriculture, 2017,16(11):2413-2420.
[17] Ren R, Liu S, Karthikeyan A , et al. Fine-mapping and identification of a novel locus Rsc15,underlying soybean resistance to soybean mosaic virus. Theoretical and Applied Genetics, 2017,130(11):2395-2410.
[18] Yan H, Wang H, Cheng H , et al. Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean. Journal of Integrative Plant Biology, 2015,57(8):722-729.
[19] Zhao L, Wang D, Zhang H , et al. Fine mapping of the RSC8 locus and expression analysis of candidate SMV resistance genes in soybean. Plant Breeding, 2016,135(6):701-706.
[20] Zheng G J, Yang Y Q, Ying M A , et al. Fine mapping and candidate gene analysis of resistance gene RSC3Q,to soybean mosaic virus,in Qihuang 1. Journal of Integrative Agriculture, 2014,13(12):2608-2615.
[21] Wang D, Ma Y, Liu N , et al. Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breeding, 2011,130(6):653-659.
[22] Yang Y, Zheng G, Han L , et al. Genetic analysis and mapping of genes for resistance to multiple strains of soybean mosaic virus in a single resistant soybean accession PI 96983. Theoretical and Applied Genetics, 2013,126(7):1783-1791.
[23] Ma Y, Wang D, Li H , et al. Fine mapping of the RSC14Q,locus for resistance to soybean mosaic virus in soybean. Euphytica, 2011,181(1):127-135.
[24] Li K, Ren R, Adhimoolam K , et al. Genetic analysis and identification of two soybean mosaic virus resistance genes in soybean [Glycine max (L.) Merr]. Plant Breeding, 2016,134(6):684-695.
[25] Karthikeyan A, Li K, Li C , et al. Fine-mapping and identifying candidate genes conferring resistance to soybean mosaic virus strain SC20 in soybean. Theoretical and Applied Genetics, 2018,131(2):461-476.
[26] Ma F, Wu X, Chen Y , et al. Fine mapping of the Rsv1-h,gene in the soybean cultivar Suweon 97 that confers resistance to two Chinese strains of the soybean mosaic virus. Theoretical and Applied Genetics, 2016,129(11):2227-2236.
[27] Sugimoto T, Kaga A, Hajika M , et al. Genetic analysis and identification of DNA markers linked to a novel sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica, 2011,182(1):133-145.
[28] Li N, Zhao M, Liu T , et al. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontiers in Plant Science, 2017,8(1):1-8.
[29] Lin F, Zhao M, Ping J , et al. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI567139B. Theoretical and Applied Genetics, 2013,126(8):2177-2185.
[30] Li L, Feng L, Wang W , et al. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae,in soybean. Theoretical and Applied Genetics, 2016,129(12):2379-2386.
[31] Zhang J, Xia C, Duan C , et al. Identification and candidate gene analysis of a novel phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE, 2013,8(7):e69799.
[32] Ping J, Fitzgerald J C, Zhang C , et al. Identification and molecular mapping of Rps11,a novel gene conferring resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics, 2016,129(2):445-451.
[33] Zhong C, Sun S, Li Y , et al. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene,RpsHC18,in soybean. Theoretical and Applied Genetics, 2018,131(3):525-538.
[34] Sun J, Li L, Zhao J , et al. Genetic analysis and fine mapping of RpsJS,a novel resistance gene to Phytophthora sojae,in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 2014,127(4):913-919.
[35] Cheng Y, Ma Q, Ren H , et al. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 2017,130(5):1041-1051.
[36] 肖亮, 武天龙 . 大豆抗蚜虫研究进展. 中国农学通报, 2013,29(36):326-333.
[37] Meng F, Han Y, Teng W , et al. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar 'Zhongdou 27'. Theoretical and Applied Genetics, 2011,123(8):1459-1465.
[38] Zhang G, Gu D, Wang D . Mapping and validation of a gene for soybean aphid resistance in PI567537. Molecular Breeding, 2013,32(1):131-138.
[39] Xiao L, Zhong Y P, Wang B , et al. Mapping an aphid resistance gene in soybean [Glycine max (L.) Merr.] P746. Genetics and Molecular Research, 2014,13(4):9152-9160.
[40] Zhang S, Zhang Z, Bales C , et al. Mapping novel aphid resistance QTL from wild soybean,Glycine soja 85-32. Theoretical and Applied Genetics, 2017,130(4):1941-1952.
[41] 娄雪 . 野生大豆抗胞囊线虫病相关SNP标记的开发及其辅助选择. 长春:东北师范大学, 2016.
[42] Chen H, Zhao S, Yang Z , et al. Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907. Theoretical and Applied Genetics, 2015,128(4):733-743.
[43] Liu M, Li S, Swaminathan S , et al. Identification of a soybean rust resistance gene in PI567104B. Theoretical and Applied Genetics, 2016,129(5):863-877.
[44] 李穆, 刘念析, 岳岩磊 , 等. 抗大豆白粉病南方栽培大豆种质资源的初步筛选. 大豆科学, 2016,35(2):209-212.
[45] Wang Y, Shi A, Zhang B , et al. Mapping powdery mildew resistance gene in V97-3000 soybean. Plant Breeding, 2013,132(6):625-629.
[46] 宋伟, 赵雪, 徐玲秀 , 等. 大豆抗菌核病位点挖掘及一致性QTL分析. 中国油料作物学报, 2017,39(6):763-770.
[47] Zhao X, Han Y, Li Y , et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean [Glycine max (L.) Merr.] via association and linkage maps. The Plant Journal, 2015,82(2):245-255.
[1] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24–28
[2] 赵越,孙宇峰,韩承伟,韩喜财,姜颖,曹焜,王晓楠. 分子标记技术在工业大麻性别分化研究中的应用进展[J]. 作物杂志, 2019, (3): 20–23
[3] 杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019, (3): 55–65
[4] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1–7
[5] 代希茜,詹和明,崔兴洪,赵银月,单丹丹,张亮,王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究[J]. 作物杂志, 2019, (2): 128–135
[6] 林春雨,梁晓宇,赵慧艳,王洋. 黑龙江省主栽大豆品种遗传多样性和群体结构分析[J]. 作物杂志, 2019, (2): 78–83
[7] 刘博,卫玲,肖俊红,杨海峰,段学艳,陈爱萍,任瑞兰. 关于提高大豆杂交结实率的研究[J]. 作物杂志, 2019, (1): 81–84
[8] 李悦,李海燕,于吉东,邓杰,宫远福,朱俊澍. 线麻秸秆浸提液对大豆的化感作用[J]. 作物杂志, 2019, (1): 175–179
[9] 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育[J]. 作物杂志, 2018, (6): 10–16
[10] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32–36
[11] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[12] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[13] 张帅,庞玉辉,王征宏,王黎明,陈春燕,曾占奎,王春平. 小麦种质资源农艺性状变异及其遗传多样性分析[J]. 作物杂志, 2018, (2): 44–51
[14] 陆姗姗,吴承来,李岩,张春庆. 玉米自交系性状保持和纯化的分子依据[J]. 作物杂志, 2018, (1): 41–48
[15] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156–159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[3] 柏文恋,郑毅,肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J]. 作物杂志, 2018, (4): 20 –27 .
[4] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42 –47 .
[5] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48 –52 .
[6] 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 62 –68 .
[7] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95 –101 .
[8] 马瑞琦,亓振,常旭虹,王德梅,陶志强,杨玉双,冯金凤,孙敏,赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应[J]. 作物杂志, 2018, (1): 133 –140 .
[9] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152 –155 .
[10] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156 –159 .