作物杂志,2020, 第3期: 142–148 doi: 10.16035/j.issn.1001-7283.2020.03.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同播种量对临麦4号产量和干物质积累及分配的影响

吕广德1, 殷复伟2, 孙盈盈1, 钱兆国1, 徐加利3, 李宁4, 薛丽娜4, 吴科1()   

  1. 1泰安市农业科学研究院,271000,山东泰安
    2泰安市农业技术推广站,271000,山东泰安
    3泰安市种子管理站,271000,山东泰安
    4泰安市禾元种业科技有限公司,271000,山东泰安
  • 收稿日期:2019-10-11 修回日期:2019-12-19 出版日期:2020-06-15 发布日期:2020-06-10
  • 通讯作者: 吴科 E-mail:sdtawuke1964@126.com
  • 作者简介:吕广德,主要从事小麦遗传育种与栽培研究,E-mail: 2007guangd@163.com|殷复伟为共同第一作者,主要从事农业技术研究与推广,E-mail: tsyfw@126.com
  • 基金资助:
    山东省重点研发计划(科技攻关部分)(2016GNC113004);国家小麦现代农业产业技术体系(CARS-3-2-21);山东省现代农业产业技术体系(SDAIT-04-021-12)

Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4

Lü Guangde1, Yin Fuwei2, Sun Yingying1, Qian Zhaoguo1, Xu Jiali3, Li Ning4, Xue Lina4, Wu Ke1()   

  1. 1Tai'an Academy of Agricultural Sciences, Tai'an 271000, Shandong, China
    2Tai'an Agricultural Technology Extension Station, Tai'an 271000, Shandong, China
    3Tai'an Seed Management Station, Tai'an 271000, Shandong, China
    4Tai'an Heyuan Seed Technology Co., Ltd, Tai'an 271000, Shandong, China
  • Received:2019-10-11 Revised:2019-12-19 Online:2020-06-15 Published:2020-06-10
  • Contact: Ke Wu E-mail:sdtawuke1964@126.com

摘要:

小麦播种量作为多项栽培措施中的重要一环,对于调整群体结构和产量水平有重要作用。以大穗型小麦品种临麦4号为研究材料,探讨75、150、225、300和375kg/hm2 5个播种量水平条件下的小麦群体结构、干物质积累与分配、产量的差异。2年结果表明,与其他播种量相比,150kg/hm2播种量处理花前营养器官干物质贮藏再转运量、花前营养器官干物质对籽粒的贡献率、花后干物质生产量、花后干物质对籽粒的贡献率和成熟期籽粒干物质积累量最高,均达显著差异水平;花后各器官干物质积累量在各播种量之间达显著差异水平,其中150kg/hm2播种量处理的穗部和整株的干物质积累量最高;150kg/hm2播种量处理籽粒产量最高,各播种量之间差异达显著水平。

关键词: 小麦, 播种量, 群体结构, 干物质, 籽粒产量

Abstract:

As an important part of various cultivation measures, wheat seeding rate plays an important role in adjusting plant density and yield level. The difference in plant density, dry matter accumulation and distribution and yield of wheat under the five levels of seeding rates (75, 150, 225, 300 and 375kg/ha) were studied. The results of the two-year study showed that compared with other seeding rate, the dry matter storage and retransfer capacity of vegetative organs before flowering and its contribution rate to grains, the dry matter production after flowering and its contribution rate to grains, and the dry matter accumulation of grains at maturity were the highest at the seeding rate of 150kg/ha and reaching at a significant difference level. The dry matter accumulation of each organ after flowering was significantly different, among which the dry matter accumulations of spike and whole plant were the highest in the seeding rate of 150kg/ha. The grain yield was the highest at 150kg/ha seeding rate, and there were significant differences among different seeding rates.

Key words: Wheat, Seeding rate, Population structure, Dry matter, Grain yield

表1

播种前土壤地力情况"

年份Year 有机质Organic matter (g/kg) 碱解氮Alkaline hydrolysis N (mg/kg) 速效磷Available P (mg/kg) 速效钾Available K (mg/kg)
2015-2016 16.6 99.8 42.2 111
2016-2017 16.5 95.3 38.3 110

表2

不同播种量对临麦4号产量结构和收获指数的影响"

年份
Year
播种量
Seeding rate
(kg/hm2)
基本苗
Basic seedling
(×104/hm2)
穗数
Number of spike
(×104/hm2)
穗粒数
Kernels per
spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
收获指数
Harvest
index (%)
2015-2016 75 145.05e 459.0c 48.9a 49.13a 8 704.98bc 53.76b
150 282.15d 494.8bc 45.4b 48.46b 9 326.22a 56.67a
225 422.55c 561.6ab 42.5c 47.30c 8 727.71b 54.08b
300 611.55b 586.8a 42.3d 45.28d 8 674.68bc 53.48b
375 699.00a 594.7a 38.3e 45.10e 8 341.33c 53.10b
2016-2017 75 118.95e 452.5d 48.4a 45.29a 8 660.75bc 54.44b
150 211.50d 483.0c 45.6b 44.30b 9 406.82a 56.98a
225 378.00c 518.9b 43.4c 41.32c 8 933.78b 55.58ab
300 512.55b 571.9a 40.9d 39.42d 8 600.43cd 54.17b
375 643.05a 581.2a 32.8e 38.22e 8 349.62d 54.11b

表3

不同播种量对临麦4号不同发育阶段干物质积累量的影响"

年份
Year
处理
Treatment
出苗–冬前
Emerging–Pre-winter
冬前–拔节
Pre-winter–Jointing
拔节–开花
Jointing–Anthesis
开花–成熟
Anthesis–Maturity
播种量
Seeding rate (kg/hm2)
积累量
Accumulation
(kg/hm2)
比例
Rate
(%)
积累量
Accumulation
(kg/hm2)
比例
Rate
(%)
积累量
Accumulation
(kg/hm2)
比例
Rate
(%)
积累量
Accumulation
(kg/hm2)
比例
Rate
(%)
2015-2016 75 1 420.26c 9.43c 2 415.87e 16.04c 5 539.56b 36.78ab 5 183.44b 34.42b
150 1 442.43c 8.91c 2 552.81d 15.76c 6 073.87a 37.46a 6 035.39a 37.26a
225 1 854.99b 12.01b 2 801.51c 18.13b 5 689.88b 36.80ab 5 336.33b 34.52b
300 1 865.23b 12.73b 3 082.21b 21.03a 5 142.05c 35.05bc 4 426.65c 30.19c
375 2 050.81a 14.02a 3 148.21a 21.51a 4 804.36d 32.83c 4 128.76c 28.14d
2016-2017 75 1 224.22e 8.05d 2 520.97c 16.57c 6 048.59b 39.77a 5 416.65c 35.61ab
150 1 424.86d 8.39d 2 858.18b 16.84c 6 530.83a 38.47a 6 161.22a 36.30a
225 1 659.42c 10.01c 2 827.44b 17.06c 6 341.58a 38.27a 5 743.08b 34.66b
300 1 727.29b 12.33b 2 991.58b 21.36b 4 619.78c 32.98b 4 671.04d 33.34c
375 2 006.32a 14.35a 3 247.40a 23.23a 4 488.49c 32.10b 4 248.42e 30.37d

表4

播种量对临麦4号开花前贮藏干物质转运和花后光合同化物积累的影响"

年份
Year
播种量
Seeding
rate
(kg/hm2)
成熟期籽粒
干物质积累量
Accumulation of dry matter in grain at maturity (kg/hm2)
开花前营养器官干物质贮藏再转运
Remobilization of dry matter stored in
vegetative organs before anthesis
开花后干物质生产
Accumulation of dry matter
after anthesis
转运量
Translocation amount
(kg/hm2)
转运率Translocation
rate (%)
贡献率
Contribution
rae (%)
生产量
Accumulation amount
(kg/hm2)
贡献率Contribution
rate (%)
2015-2016 75 7 158.51b 1 975.07b 27.17b 27.26b 5 183.44b 72.74b
150 7 317.90a 1 282.51c 14.79c 17.27c 6 035.39a 82.73a
225 7 189.46b 1 853.13b 22.48bc 25.31b 5 336.33b 74.69b
300 7 028.72c 2 602.06a 35.72a 36.49a 4 426.65c 63.51c
375 6 936.89c 2 808.13a 40.19a 39.97a 4 128.76c 60.03c
2016-2017 75 7 134.89ab 1 718.24c 21.64b 23.78c 5 416.65c 76.22c
150 7 316.61a 1 155.39e 12.15c 15.54e 6 161.22a 84.46a
225 7 151.92ab 1 408.84d 15.31c 19.21d 5 743.08b 80.79b
300 6 902.14bc 2 231.10b 32.02a 31.98b 4 671.04d 68.02d
375 6 821.48c 2 573.06a 36.79a 37.28a 4 248.42e 62.72e

图1

不同播种量条件下临麦4号花后不同发育时期各器官干物质积累量的变化 不同小写字母表示差异显著(P<0.05)"

[1] 金善宝 . 中国小麦学. 北京: 中国农业出版社, 1996: 684-689.
[2] Julia B S, Jane E P, Elizabeth A A , et al. Genetic strategies for improving crop yields. Nature, 2019,575:109-118.
doi: 10.1038/s41586-019-1679-0
[3] 于振文 . 小麦产量与品质生理及栽培技术. 北京: 中国农业出版社, 2007.
[4] 余松烈, 于振文, 董庆裕 , 等. 小麦亩产789.9kg高产栽培技术思路. 山东农业科学, 2010(4):11-12.
[5] Geleta B, Atak M, Baenziger P S , et al. Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat. Crop Science, 2002,42(3):827-832.
[6] Lloveras J, Manent J, Viudas J , et al. Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agronomy Journal, 2004,96(5):1258-1265.
doi: 10.2134/agronj2004.1258
[7] Carr P M, Horsley R D, Poland W W . Tillage and seeding rate effects on wheat cultivars:I. grain production. Crop Science, 2003,43(1):202-209.
doi: 10.2135/cropsci2003.2020
[8] Hiltbrunner J, Streit B, Liedgens M . Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover. Field Crops Research, 2007,102(3):163-171.
doi: 10.1016/j.fcr.2007.03.009
[9] Hemmat A, Taki O . Grain yield of irrigated winter wheat as affected by stubble-tillage management and seeding rates in central Iran. Soil and Tillage Research, 2001,63(1/2):57-64.
doi: 10.1016/S0167-1987(01)00236-7
[10] 杨桂霞, 赵广才, 许轲 , 等. 播期和密度对冬小麦籽粒产量和营养品质及生理指标的影响. 麦类作物学报, 2010,30(4):687-692.
doi: 10.7606/j.issn.1009-1041.2010.04.020
[11] Fang Y, Xu B, Turner N C , et al. Grain yield,dry matter accumulation and remobilization and root respiration in winter wheat as affected by seeding rate and root pruning. European Journal of Agronomy, 2010,33(4):257-266.
doi: 10.1016/j.eja.2010.07.001
[12] 赵永萍, 张保军, 张正茂 , 等. 种植密度对小麦产量及其构成因素的影响. 西北农业学报, 2009,18(6):107-111.
[13] 李筠, 王龙, 任立凯 , 等. 播期、密度和氮肥运筹对冬小麦连麦2号产量与品质的调控. 麦类作物学报, 2010,30(2):303-308.
doi: 10.7606/j.issn.1009-1041.2010.02.022
[14] 曹倩, 贺明荣, 代兴龙 , 等. 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, 2011,17(4):815-822.
doi: 10.11674/zwyf.2011.0545
[15] 凌启鸿 . 作物群体质量. 上海: 科学技术出版社, 2002: 222.
[16] 李朝霞, 赵世杰, 孟庆伟 , 等. 高粒叶比小麦群体生理基础研究进展. 麦类作物学报, 2002,22(4):79-83.
doi: 10.7606/j.issn.1009-1041.2002.04.111
[17] 黄振喜, 王永军 . 产量15000kg/hm2以上夏玉米灌浆期间的光合特性 . 中国农业科学, 2007,40(9):1898-1906.
[18] Colom M R, Vazzana C . Photosynthesis and PSⅡ functionality of drought-resistant and drought-sensitive weeping loregrass plant. Environmental and Experimental Botany, 2003,49(2):135-144.
doi: 10.1016/S0098-8472(02)00065-5
[19] 安强, 李宏伟, 李春莲 , 等. 小麦叶面积指数的遗传变异及其影响因素与产量的关系. 西北农业学报, 2011,20(12):46-53.
[20] 荆奇, 戴廷波, 姜东 , 等. 不同生态条件下不同基因型小麦干物质和氮素积累与分配特征. 南京农业大学学报, 2004(1):1-5.
[21] 房全孝, 陈雨海, 李全起 , 等. 灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响. 作物学报, 2004,30(11):1113-1118.
[22] 高聚林, 刘克礼, 张永平 , 等. 不同农艺措施对春小麦群体干物质积累的影响. 麦类作物学报, 2003,23(3):79-84.
doi: 10.7606/j.issn.1009-1041.2003.03.095
[23] 屈会娟, 李金才, 沈学善 , 等. 种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响. 作物学报, 2009,35(1):127-131.
[24] 于振文 . 作物栽培学各论. 北京: 中国农业出版社, 2003.
[25] 何盛莲, 吴政卿, 雷振生 , 等. 播期、播量对小麦新品种郑麦9962产量及其构成因素的影响. 河南农业科学, 2013,42(9):22-24.
[26] 李春喜, 石惠恩, 姜丽娜 . 小麦不同种植密度粒重分布特性的研究. 西北植物学报, 1999,19(1):132-137.
[27] 史晓芳, 仇松英, 史忠良 , 等. 播期和播量对冬小麦尧麦16群体性状和产量的影响. 麦类作物学报, 2017,37(3):357-365.
[28] 雷振生, 林作楫 . 河南小麦品种农艺性状演变及今后育种方向. 中国农业科学, 1995(S1):28-33.
[29] 杨亚洲, 赵延勃, 张保亮 . 不同播量对周麦32号小麦产量及产量构成因素的影响. 现代农业科技, 2018(23): 29, 35.
[30] 杜亚君, 王福玉, 陈贵菊 , 等. 播期播量对小麦品种济麦22产量及其构成因素的影响. 农业科技通讯, 2019(9):84-86.
[31] Álvaro F, Isidro J, Villegas D , et al. Breeding effects on grain filling,biomass partitioning and remobilization in mediterranean durum wheat. Agronomy Journal, 2008,100(2):361-370.
doi: 10.2134/agronj2007.0075
[32] 卢殿君, 陈新平, 张福锁 , 等. 花后营养调控对冬小麦灌浆期物质生产、氮素吸收及再运移的影响. 中国农学通报, 2013,29(9):57-60.
[33] 田中伟, 王方瑞, 戴廷波 , 等. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012,45(4):801-808.
doi: 10.3864/j.issn.0578-1752.2012.04.022
[34] 郭伟, 于立河, 崔丽亚 . 密度及干物质运转对龙麦26小麦产量及品质的影响. 黑龙江八一农垦大学学报, 2003,15(3):17-20.
[1] 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102–108
[2] 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154–160
[3] 刘勇, 刘易科, 朱展望, 田进东, 陈泠, 邹娟, 赵发文, 关健, 高春保, 佟汉文. 小麦有机生产现状与分析——以湖北省南漳县稻茬麦有机产品认证为例[J]. 作物杂志, 2020, (3): 16–21
[4] 朱英杰, 刘富启, 张燕, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才. 不同土壤条件下氮肥处理对小麦产量及品质的影响[J]. 作物杂志, 2020, (3): 184–190
[5] 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J]. 作物杂志, 2020, (3): 60–65
[6] 段俊枝, 齐学礼, 冯丽丽, 张会芳, 孙岩, 燕照玲, 陈海燕, 齐红志, 樊文杰, 杨翠苹, 刘毓侠, 任银玲, 张甲源, 李莹, 卓文飞. 抗旱基因在小麦抗旱基因工程中的应用进展[J]. 作物杂志, 2020, (3): 7–15
[7] 陈丹, 普健萍, 伍少云, 周国雁, 隆文杰, 武晓阳, 蔡青. 云南小麦变种分类与地理分布研究[J]. 作物杂志, 2020, (3): 85–91
[8] 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168–171
[9] 陈天鑫,王艳杰,张燕,常旭虹,陶志强,王德梅,杨玉双,朱英杰,刘阿康,石书兵,赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 88–96
[10] 张博,高甜甜,程宏波,李瑞,柴雨葳,李亚伟,柴守玺. 覆盖对旱地冬小麦植株和旗叶水分含量及产量的影响[J]. 作物杂志, 2020, (2): 97–104
[11] 胡宇倩,资涛,熊廷浩,张振华,宋海星. 早熟与常规熟期冬油菜品种养分吸收规律差异研究[J]. 作物杂志, 2020, (1): 117–123
[12] 黄寅玲,雷忠顺,郑涛,索新霞. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020, (1): 130–135
[13] 张永强,齐晓晓,张璐,董慧云,陈传信,赛力汗·赛,薛丽华,陈兴武,雷钧杰. 氮肥运筹对滴灌冬小麦叶片光合特性及产量的影响[J]. 作物杂志, 2020, (1): 141–145
[14] 杨文彪,张慧芋,李莹,祁泽伟,刘凯凯,高志强,孙敏,薛建福. 山西省冬小麦生产潜力时空分布与气象因子分析[J]. 作物杂志, 2020, (1): 161–167
[15] 王志伟, 王志龙, 乔祥梅, 杨金华, 程加省, 程耿, 于亚雄. 云南小麦品种(系)锈病和赤霉病抗性功能基因的KASP标记检测[J]. 作物杂志, 2020, (1): 187–193
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!