作物杂志,2021, 第3期: 51–56 doi: 10.16035/j.issn.1001-7283.2021.03.008

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

四川豌豆种质资源白粉病抗性及分子鉴定

项超1(), 孙素丽2, 朱振东2, 宗绪晓2(), 杨涛2, 刘荣2, 杨梅1, 鲜东锋1, 杨秀燕1   

  1. 1四川省农业科学院作物研究所,610066,四川成都
    2中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2020-12-29 修回日期:2021-01-29 出版日期:2021-06-15 发布日期:2021-06-22
  • 通讯作者: 宗绪晓
  • 作者简介:项超,主要从事豆类种质资源与遗传育种,E-mail: xc2011cib@163.com
  • 基金资助:
    国家食用豆产业技术体系(CARS-08);四川省科技计划项目(2018JY0152);四川省财政创新能力提升工程项目(2016ZYPZ-017);四川省财政创新能力提升工程项目(2018QNJJ-029);第十六批“西部之光”访问学者人才计划项目

Resistance and Molecular Identification to Powdery Mildew of Pea Germplasms in Sichuan

Xiang Chao1(), Sun Suli2, Zhu Zhendong2, Zong Xuxiao2(), Yang Tao2, Liu Rong2, Yang Mei1, Xian Dongfeng1, Yang Xiuyan1   

  1. 1Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-12-29 Revised:2021-01-29 Online:2021-06-15 Published:2021-06-22
  • Contact: Zong Xuxiao

摘要:

豌豆白粉病是由白粉菌(Erysiphe pisi D. C.)引起的豌豆最重要的病害之一,控制豌豆白粉病最经济有效且环保的方法是种植抗病品种。在温室条件下对400份豌豆种质资源进行白粉病抗性鉴定,同时利用7个与已知豌豆抗白粉病基因连锁的分子标记进行基因型鉴定。结果表明,在400份资源中,有8份表现免疫,3份表现抗病,5份表现抗感分离,其余384份均为感病;16份抗性资源中有10份来自于四川省中部不同纬度地区,其余6份为国外引进资源;7个分子标记将400份种质资源分为39个标记基因型,其中16份抗性资源分为7个标记基因型。上述抗性资源及其标记基因型可有效应用于豌豆白粉病抗性育种的研究中。

关键词: 豌豆, 白粉病, 种质资源, 抗性鉴定

Abstract:

Powdery mildew caused by Erysiphe pisi D. C. is one of the most important diseases of pea. The most economical, effective and environmentally friendly way to control powdery mildew of pea is to plant resistant varieties. A total of 400 pea germplasm resources were identified for the resistance to powdery mildew under greenhouse conditions. At the same time, seven molecular markers linked to known powdery mildew resistance genes of pea were used for genotype identification. The results showed that among the 400 identified germplasms, eight accessions showed immunity, three accessions showed resistance, five accessions showed resistance-susceptibility separation, and the remaining 384 accessions were susceptible. Among the 16 resistant accessions, ten accessions were from different latitudes in central of Sichuan and the remaining six accessions were imported from abroad. Seven molecular markers divided the 400 germplasms into 39 marker genotypes and 16 resistant germplasms were divided into seven marker genotypes. The resistant resources and their marker genotypes described above could be effectively used for the breeding of pea resistant to powdery mildew.

Key words: Pea, Powdery mildew, Germplasm resources, Resistance identification

表1

用于豌豆资源标记基因型鉴定的分子标记

分子标记
Molecular
marker
引物序列
Primer sequence
退火温度
Annealing temperature (°C)
遗传距离
Genetic
distance (cM)
条带大小
Band
size (bp)
基因
Gene
来源文献
Reference
ScOPD-10650
F: GGTCTACACCTAAACAGTGTCCGT
R: GGTCTACACCTCATATCTTGATGA
58.0 2.1 650 er1 Timmerman等[17],Tiwari等[18]
ScOPE-161600
F: GGTGACTGTGGAATGACAAA
R: GGTGACTGTGACAATTCCAG
55.0 4.0±2.0 1600 er1 Tiwari等[18]
ScOPO-181200
F: CCCTCTCGCTATCCAATCC
R: CCTCTCGCTATCCGGTGTG
60.0 0.0 1200 Er1 Tiwari等[18]
ScOPX-04880
F: CCGCTACCGATGTTATGTTTG
R: CCGCTACCGAACTGGTTGGA
58.0 0.6 880 Er1 Srivastava等[19]
ScX17_1400
F: GGACCAAGCTCGGATCTTTC
R: GACACGGACCCAATGACATC
65.0 2.6 1400 er2 Katoch等[20]
SCW4637
F: CAGAAGCGGATGAGGCGGA
R: CAGAAGCGGATACAGTACTAAC
55.0 0.0 637 Er3 Fondevilla等[21]
SCAB1874
F: CCGTCGGTAGTAAACTA
R: CCGTCGGTAGCCACACCA
59.5 2.8 874 Er3 Fondevilla等[21]

图1

抗病、免疫和感病植株对比

表2

四川抗性资源分布

名称
Name
编号
No.
抗性
Resistance
地点
Location
昭化麻-1 Zhaohuama-1 179 R/S 昭化
绵阳花Mianyanghua 209 R/S 绵阳
金堂黄麻-2 Jintanghuangma-2 329 I 金堂
大邑白豌豆Dayibaiwandou 382 I 大邑
眉山菜Meishancai 248 R/S 眉山
犍为大绿Qianweidalü 256 I 犍为
高县大麻-2 Gaoxiandama-2 168 R 高县
会理大菜豌Huilidacaiwan 100 R 会理
会理大白Huilidabai 98 R/S 会理
会理大白壳Huilidabaike 99 R/S 会理

图2

7个与白粉病抗性基因连锁的SCAR标记扩增条带 369:食荚小菜豌3号,370:食荚甜脆豌1号-1,371:成豌7号,372:食荚大菜豌1号-2,373:食荚甜脆豌1号-2,374:成豌8号(对照),375:成豌9号,376:青豌豆,M:DL 2000 Marker

表3

7个分子标记扩增条带资源份数

标记
Marker
扩增出条带数
Number of accessions
with amplified fragment
占比
Proportion
(%)
基因
Gene
ScOPD-10650 365 91.25 er1
ScOPE-161600 334 83.50 er1
ScOPO-181200 350 87.50 Er1
ScOPX-04880 367 91.75 Er1
ScX17_1400 359 89.75 er2
SCW4637 88 22.00 Er3
SCAB1874 394 98.50 Er3

图3

400份豌豆种质资源抗白粉病标记基因型鉴定聚类分析 G1~G39表示39个标记基因型,括号内第一个数字表示资源份数,第二个数字表示抗性资源份数,红线表示存在抗性资源

[1] Faostat. . Data Crops. (2020-12-22)[2020-12-29]. http://www.fao.org/faostat/en/#data/QC.
[2] Warkentin T, Rashid K, Xue A . Fungicidal control of powdery mildew in field pea. Canadian Journal of Plant Science, 1996,76(4):933-935.
doi: 10.4141/cjps96-156
[3] Fondevilla S, Cubero J, Rubiales D . Confirmation that the Er3 gene,conferring resistance to Erysiphe pisi in pea,is a different gene from er1 and er2 genes. Plant Breeding, 2011,130(2):281-282.
doi: 10.1111/pbr.2011.130.issue-2
[4] Ghafoor A, McPhee K . Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012,186(3):593-607.
doi: 10.1007/s10681-011-0596-6
[5] Sun S, Fu H, Wang Z , et al. Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS ONE, 2016,11(1):e0147624.
doi: 10.1371/journal.pone.0147624
[6] Harland S . Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948,2(Pt 2):263-269.
doi: 10.1038/hdy.1948.15
[7] Heringa R, Norel A V, Tazelaar M . Resistance to powdery mildew (Erisyphe polygoni DC) in peas (Pisum sativum L.). Euphytica, 1969,18(2):163-169.
doi: 10.1007/BF00035687
[8] Fondevilla S, Carver T L W, Moreno M T , et al. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. European Journal of Plant Pathology, 2006,115(3):309-321.
doi: 10.1007/s10658-006-9015-6
[9] Fondevilla S, Torres A M, Moreno M T , et al. Identification of a new gene for resistance to powdery mildew in Pisum fulvum,a wild relative of pea. Breeding Science, 2007,57(2):181-184.
doi: 10.1270/jsbbs.57.181
[10] Ondřej M, Dostálová R, Odstrčilová L . Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri,a new pathogen of peas. Plant Protection Science, 2005(41):95-103.
[11] Attanayake R N, Glawe D A, Mcphee K E , et al. Erysiphe trifolii-a newly recognized powdery mildew pathogen of pea. Plant Pathology, 2010,59(4):712-720.
doi: 10.1111/ppa.2010.59.issue-4
[12] Fondevilla S, Chattopadhyay C, Khare N , et al. Erysiphe trifolii is able to overcome er1 and Er3,but not er2,resistance genes in pea. European Journal of Plant Pathology, 2013,136(3):557-563.
doi: 10.1007/s10658-013-0187-6
[13] Tiwari K R, Penner G A, Warkentin T D , et al. Pathogenic variation in Erysiphe pisi,the causal organism of powdery mildew of pea. Canadian Journal of Plant Pathology, 1997,19(3):267-271.
doi: 10.1080/07060669709500522
[14] Tiwari K R, Penner G A, Warkentin T D . Inheritance of powdery mildew resistance in pea. Canadian Journal of Plant Science, 1997,77(3):307-310.
doi: 10.4141/P96-157
[15] Fondevilla S, Rubiales D . Powdery mildew control in pea. A review. Agronomy for Sustainable Development, 2012,32(2):401-409.
doi: 10.1007/s13593-011-0033-1
[16] Sun S, Wang Z, Fu H , et al. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. The Crop Journal, 2015,3(6):489-499.
doi: 10.1016/j.cj.2015.07.006
[17] Timmerman G M, Frew T J, Weeden N F , et al. Linkage analysis of er-1,a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theoretical and Applied Genetics, 1994,88(8):1050-1055.
doi: 10.1007/BF00220815 pmid: 24186261
[18] Tiwari K, Penner G, Warkentin T . Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998,41(3):440-444.
doi: 10.1139/g98-014
[19] Srivastava R K, Mishra S K, Singh A K , et al. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’ in pea (Pisum sativum L.). Euphytica, 2012,186(3):855-866.
doi: 10.1007/s10681-012-0650-z
[20] Katoch V, Sharma S, Pathania S , et al. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group Ⅲ. Molecular Breeding, 2010,25(2):229-237.
doi: 10.1007/s11032-009-9322-7
[21] Fondevilla S, Rubiales D, Moreno M T , et al. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Molecular Breeding, 2008,22(2):193-200.
doi: 10.1007/s11032-008-9166-6
[22] Kreplak J, Madoui M-A, Cápal P , et al. A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019,51(9):1411-1422.
doi: 10.1038/s41588-019-0480-1
[23] Kulaeva O A, Zhernakov A I, Afonin A M , et al. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS ONE, 2017,12(10):e0186713.
doi: 10.1371/journal.pone.0186713
[24] 彭化贤, 姚革, 贾瑞林 , 等. 豌豆抗白粉病资源鉴定研究. 西南农业大学学报, 1991(4):20-22.
[25] 曾亮, 李敏权, 杨晓明 . 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012,32(4):35-38.
[26] 陆建英, 杨晓明, 王昶 , 等. 抗白粉病豌豆种质资源田间筛选. 植物保护, 2015(3):154-158.
[27] 王仲怡, 包世英, 段灿星 , 等. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013,39(6):1030-1038.
[28] 付海宁, 孙素丽, 朱振东 , 等. 加拿大豌豆品种(系)抗白粉病表型和基因型鉴定. 植物遗传资源学报, 2014,15(5):1028-1033.
[29] Pavan S, Schiavulli A, Appiano M , et al. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theoretical and Applied Genetics, 2011,123(8):1425-1431.
doi: 10.1007/s00122-011-1677-6
[30] Humphry M, Reinstaedler A, Ivanov S , et al. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 2011,12(9):866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385
[31] Santo T, Rashkova M, Alabaça C , et al. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S (er1mut1) and F (er1mut2) harbour early stop codons in the PsMLO1 gene. Molecular breeding, 2013,32(3):723-727.
doi: 10.1007/s11032-013-9889-x
[32] Sun S, Deng D, Wang Z , et al. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theoretical and Applied Genetics, 2016,129(5):909-919.
doi: 10.1007/s00122-016-2671-9
[33] 王仲怡, 付海宁, 孙素丽 , 等. 豌豆品系X9002抗白粉病基因鉴定. 作物学报, 2015,41(4):515-523.
[34] Liu S M, O'Brien L, Moore S G , et al. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Australian Journal of Experimental Agriculture, 2003,43(4):373-378.
doi: 10.1071/EA01142
[35] Ek M, Eklund M, Von P R , et al. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005,142(2005):86-91.
pmid: 16970617
[1] 李琼, 常世豪, 武婷婷, 耿臻, 杨青春, 舒文涛, 李金花, 张东辉, 张保亮. 120份大豆种质资源遗传多样性和亲缘关系分析[J]. 作物杂志, 2021, (4): 51–58
[2] 贾瑞玲, 赵小琴, 南铭, 陈富, 刘彦明, 魏立平, 刘军秀, 马宁. 64份苦荞种质资源农艺性状遗传多样性分析与综合评价[J]. 作物杂志, 2021, (3): 19–27
[3] 李梦钰, 高闯, 李巧云, 徐凯歌, 王丝雨, 牛吉山. 苗期及灌浆期抗Bipolaris sorokiniana叶枯病小麦品种(系)鉴定及相关性分析[J]. 作物杂志, 2021, (3): 40–45
[4] 潘晓雪, 胡明瑜, 王忠伟, 吴红, 雷开荣. 不同水稻种质资源重要农艺性状与发芽期耐寒性鉴定研究[J]. 作物杂志, 2021, (1): 47–53
[5] 曾艳华, 谢和霞, 江禹奉, 周锦国, 谢小东, 周海宇, 谭贤杰, 覃兰秋, 程伟东. 基于SNP标记的爆裂玉米农家品种遗传多样性[J]. 作物杂志, 2020, (5): 65–70
[6] 宫彦龙, 雷月, 闫志强, 刘雪薇, 张大双, 吴健强, 朱速松. 不同生态区粳稻资源表型遗传多样性综合评价[J]. 作物杂志, 2020, (5): 71–79
[7] 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53–63
[8] 齐冰洁, 王敏, 张智勇, 贺鑫, 刘景辉. 燕麦种质资源矿质元素的多样性分析[J]. 作物杂志, 2020, (4): 72–78
[9] 公丹, 王素华, 程须珍, 王丽侠. 普通豇豆应用核心种质的SSR指纹图谱构建及多样性分析[J]. 作物杂志, 2020, (4): 79–83
[10] 刘栋, 马琴, 李爱荣, 郭娜, 马建富, 乔海明, 苗红梅. 亚麻种质资源种子形态性状与含油量的分析与评价[J]. 作物杂志, 2020, (3): 34–41
[11] 刘歆,朱容,杨梅,刘章勇. 再生稻高产种质资源筛选及高产群体分析[J]. 作物杂志, 2020, (2): 28–33
[12] 孙瑞东,臧振原,慈佳宾,杨巍,任雪娇,姜良宇,杨伟光. 玉米自交系对大斑病菌的抗性鉴定及抗性来源分析[J]. 作物杂志, 2020, (2): 65–70
[13] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15–21
[14] 吕伟,韩俊梅,任果香,文飞,王若鹏,刘文萍. 山西芝麻种质资源遗传多样性分析[J]. 作物杂志, 2019, (5): 57–63
[15] 李晶,南铭. 俄罗斯和乌克兰引进冬小麦在我国西北地区的农艺性状表现和遗传多样性分析[J]. 作物杂志, 2019, (5): 9–14
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!