作物杂志,2021, 第6期: 18 doi: 10.16035/j.issn.1001-7283.2021.06.001
• 专题综述 • 下一篇
王锐(), 陈士勇, 陈志青, 崔培媛, 卢豪, 杨艳菊, 张海鹏(), 张洪程()
Wang Rui(), Chen Shiyong, Chen Zhiqing, Cui Peiyuan, Lu Hao, Yang Yanju, Zhang Haipeng(), Zhang Hongcheng()
摘要:
根系分泌物是影响土壤氮素转化、N2O排放和植株氮肥利用率的重要因素之一,也是土壤学、植物营养学、作物生理生态与耕作栽培学、环境科学等学科的重要关注点。为全面认识根系分泌物在土壤氮循环中的作用,综述了根系分泌物的种类和测定方法,介绍了根系分泌物影响土壤关键氮转化过程及N2O排放的机理,根系分泌物对土壤硝化和反硝化过程及N2O排放的抑制作用,并对该领域未来的研究方向进行了展望。为土壤氮素转化的土壤–植物–微生物互作机制研究提供一定参考,以进一步提高氮肥利用率,减少氮肥引起的环境污染。
[1] |
Sutton M A, Oenema O, Erisman J W, et al. Too much of a good thing. Nature, 2011, 472(2):159-161.
doi: 10.1038/472159a |
[2] |
Hungate B A, Dukes J S, Shaw M R, et al. Nitrogen and climate change. Science, 2003, 302(5650):1512-1513.
pmid: 14645831 |
[3] |
Cai Z C, Shan Y H, Xu H. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nutrition, 2007, 53(4):353-361.
doi: 10.1111/j.1747-0765.2007.00153.x |
[4] | Date O P. Guatemala:FAO/WFP crop and food security assessment mission to Guatemala. (2010-02-23) [2021-04-01]. http://www.fao.org/giews/. |
[5] |
Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004 |
[6] | Chen D, Suter H C, Islam A, et al. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture:a review of enhanced efficiency fertilisers. Australian Journal of Soil Research, 2008, 46(4):289-301. |
[7] | Geng J B, Chen J Q, Sun Y B, et al. Controlled release urea improved nitrogen use efficiency and yield of wheat and corn. Soil Fertility and Crop Nutrition, 2016, 108(4):1666-1673. |
[8] |
Zhu T B, Zhang J B, Cai Z C. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant and Soil, 2011, 343(1):313-327.
doi: 10.1007/s11104-011-0720-3 |
[9] |
Subbarao G V, Sahrawat K L, Nakahara K, et al. A paradigm shift towards low-nitrifying production systems:the role of biological nitrification inhibition. Annals of Botany, 2013, 112(3):297-316.
doi: 10.1093/aob/mcs230 |
[10] | Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(2):3041-3046. |
[11] |
Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science, 2001, 292(5515):281-284.
pmid: 11303102 |
[12] |
Glass A D M. Nitrogen use efficiency of crop plants:physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, 2003, 22(5):453-470.
doi: 10.1080/07352680390243512 |
[13] |
Schafer A, Victor D G. Global passenger travel:implications for carbon dioxide emissions. Energy, 1999, 24(8):657-679.
doi: 10.1016/S0360-5442(99)00019-5 |
[14] |
Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3):357-363.
doi: 10.2134/agronj1999.00021962009100030001x |
[15] | Li Y, Ouyang J, Wang Y Y, et al. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Scientific Reports, 2015, 5(1):1-10. |
[16] | Schlesinger W H. On the fate of anthropogenic nitrogen. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(1):203-208. |
[17] |
Hofstra N, Bouwman A F. Denitrification in agricultural soils:summarizing published data and estimating global annual rates. Nutrient Cycling Agroecosystems, 2005, 72(3):267-278.
doi: 10.1007/s10705-005-3109-y |
[18] | Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057. |
[19] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植株-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027 |
[20] |
Paterson E, Gebbing T, Abel C, et al. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist, 2007, 173(3):600-610.
doi: 10.1111/j.1469-8137.2006.01931.x pmid: 17244055 |
[21] |
East R. Microbiome:soil science comes to life. Nature, 2013, 501(26):S18-S19.
doi: 10.1038/501S18a |
[22] | 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景. 土壤学报, 2021, 58(3):545-557. |
[23] | Wu H W, Haig T, Pratley J, et al. Allelo-chemicals in wheat (Triticum aestivum L.):cultivar difference in the exudation of phenolic acids. Journal of Agricultural and Food Chemistry, 2001, 27(1):125-135. |
[24] |
Materechera S A, Dexter A R, Alston A M. Formation of aggregates by plant roots in homogenized soils. Plant and Soil, 1992, 142(1):69-79.
doi: 10.1007/BF00010176 |
[25] | Soloducho J, Cabaj J. Phenolic compounds hybrid detectors. Journal of Biomaterials and Nanobiotechology, 2013, 4(3):17-27. |
[26] |
Dessureault-Rompré J, Nowack B, Schulin D, et al. Modified micro suction cup rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant and Soil, 2006, 286(1):99-107.
doi: 10.1007/s11104-006-9029-z |
[27] |
Greogory P J, Hinsinger P. New approaches to studying chemical and physical changes in the rhizosphere:An overview. Plant and Soil, 1999, 211(24):1-9.
doi: 10.1023/A:1004547401951 |
[28] |
Landi L, Valori F, Ascher J, et al. Root exudate effects on the bacterial communities,CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry, 2006, 38(3):509-516.
doi: 10.1016/j.soilbio.2005.05.021 |
[29] |
Landi L, Badalucco L, Nannipieri P. Changes in inorganic N and CO2 evolution in soil induced by L-methionine-suphoximine. Soil Biology and Biochemistry, 1995, 27(10):1345-1351.
doi: 10.1016/0038-0717(95)00052-G |
[30] |
Jilling A, Keiluweit M, Gutknecht J, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry, 2021, 158:108265.
doi: 10.1016/j.soilbio.2021.108265 |
[31] |
Nardi S, Concheri G, Pizzeghello D, et al. Soil organic matter mobilization by root exudates. Chemosphere, 2000, 41(5):653-658.
pmid: 10834364 |
[32] |
Neal A L, Ahmad S, Gordon-Weeks R, et al. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE, 2012, 7(4):e35489.
doi: 10.1371/journal.pone.0035489 |
[33] |
Rasmann S, Turlings T C J. Root signals that mediate mutualistic interactions in the rhizosphere. Current Opinion in Plant Biology, 2016, 32(8):62-68.
doi: 10.1016/j.pbi.2016.06.017 |
[34] |
Nardi N, Reniero F, Concheri G. Soil organic matter mobilization by root exudates of three maize hybrids. Chemosphere, 1997, 35(10):2237-2244.
doi: 10.1016/S0045-6535(97)00302-0 |
[35] |
Meier I C, Pritchard S G, Brzostek E R, et al. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytologist, 2015, 205(3):1164-1174.
doi: 10.1111/nph.13122 pmid: 25348688 |
[36] |
Pathan S I, Ceccherini M T, Pietramellara G, et al. Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil, 2015, 387(28):413-424.
doi: 10.1007/s11104-014-2306-3 |
[37] | Narula N, Kothe E, Behl R K. Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality, 2009, 82(6):122-130. |
[38] |
Morris K A, Stark J M, Bugbee B, et al. The invasive annual cheat grass releases more nitrogen than crested wheatgrass through root exudation and senescence. Oecologia, 2016, 181(4):971-983.
doi: 10.1007/s00442-015-3544-7 |
[39] |
Taylor A E, Zeglin L H, Dooley S, et al. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Applied Environmental Microbiology, 2010, 76(23):7691-7698.
doi: 10.1128/AEM.01324-10 |
[40] |
Dinnes D L, Karlen D L, Jaynes D B, et al. Nitrogen management strategies to reduce nitrate leaching in tile drained Mid-Western soils. Agronomy Journal, 2002, 94(8):153-171.
doi: 10.2134/agronj2002.1530 |
[41] |
Hodge A, Robinson D, Fitter A H. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 2000, 5(7):304-308.
pmid: 10871903 |
[42] | Chuckran Peter F, Fofanov V, Hungate B A, et al. Rapid response of nitrogen cycling gene transcription to labile carbon amendments in a soil microbial community. mSystems, 2021, 6(3):e00161. |
[43] |
Subbarao G V, Ishikawa T, Ito O, et al. A bioluminescence assay to detect nitrification inhibitors released from plant roots:a case study with Brachiaria humidicola. Plant and Soil, 2006, 288(1/2):101-112.
doi: 10.1007/s11104-006-9094-3 |
[44] |
Subbarao G V, Wang H Y, Ito O, et al. NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant and Soil, 2007, 290(1):245-257.
doi: 10.1007/s11104-006-9156-6 |
[45] |
Leninger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442(17):806-809.
doi: 10.1038/nature04983 |
[46] |
Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl) propionate,responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008, 180(2):442-451.
doi: 10.1111/nph.2008.180.issue-2 |
[47] | Zhu X M, Liu D Y, Yin H J. Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests. Biogeochemistry, 2021, 12:1-19. |
[48] |
Boudsocq S, Lata J C, Mathieu J, et al. Modelling approach to analyses the effects of nitrification inhibition on primary production. Functional Ecology, 2009, 23(1):220-230.
doi: 10.1111/fec.2009.23.issue-1 |
[49] |
Frank D A, Groffman P M. Plant rhizosphere N processes:what we don’t know and why we should care. Ecology, 2009, 90(6):1512-1519.
doi: 10.1890/08-0789.1 |
[50] |
Subbarao G V, Kishii M, Nakahara K, et al. Biological nitrification inhibition (BNI)-is there potential for genetic interventions in the Triticeae?. Breeding Science, 2009, 59(5):529-545.
doi: 10.1270/jsbbs.59.529 |
[51] |
Thilakarathna S K, Hernandez-Ramirez G. How does management legacy, nitrogen addition, and nitrification inhibition affect soil organic matter priming and nitrous oxide production?. Journal of Environmental Quality, 2020, 50(1):78-93.
doi: 10.1002/jeq2.v50.1 |
[52] |
Raaijmakers J M, Paulitz T C, Steinberg C, et al. The rhizosphere:a playground and battle-field for soil borne pathogens and beneficial microorganisms. Plant and Soil, 2009, 321(1):341-361.
doi: 10.1007/s11104-008-9568-6 |
[53] |
Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology. Plant Physiology, 2003, 132(1):44-51.
doi: 10.1104/pp.102.019661 |
[54] |
Rengel Z, Marschner P. Nutrient availability and management in the rhizosphere:exploiting genotypic differences. New Phytologist, 2005, 168(2):305-312.
pmid: 16219070 |
[55] |
Wattenburger C J, Gutknecht J, Zhang Q, et al. The rhizosphere and cropping system,but not arbuscular mycorrhizae,affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils. Applied Soil Ecology, 2020, 151:103540.
doi: 10.1016/j.apsoil.2020.103540 |
[56] |
Lata J C, Degrange V, Raynaud X, et al. Grass populations control nitrification in savanna soils. Functional Ecology, 2004, 18(4):605-611.
doi: 10.1111/fec.2004.18.issue-4 |
[57] |
Lu Y F, Zhang X N, Jiang J F, et al. Effect of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biology and Biochemistry, 2019, 129:48-59.
doi: 10.1016/j.soilbio.2018.11.008 |
[58] |
Myrold D D, Tiedje J M. Establishment of denitrification capacity in soil:effects of carbon,nitrate and moisture. Soil Biology and Biochemistry, 1985, 17(6):819-822.
doi: 10.1016/0038-0717(85)90140-3 |
[59] | 张晓楠, 陆玉芳, 杨婷, 等. 水稻生物硝化抑制剂1,9,-癸二醇的定量方法优化. 土壤, 2020, 52(6):1152-1157. |
[60] |
Subbarao G V, Yoshashi T, Worthington M, et al. Suppression of soil nitrification by plants. Plant Science, 2015, 233(1):155-164.
doi: 10.1016/j.plantsci.2015.01.012 |
[61] |
Subbarao G V, Rondon M, Ito O, et al. Biological nitrification inhibition (BNI)- is it a widespread phenomenon?. Plant and Soil, 2007, 294(1):5-18.
doi: 10.1007/s11104-006-9159-3 |
[62] |
Subbarao G V, Ban T, Masahiro K, et al. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming?. Plant and Soil, 2007, 299(1):55-64.
doi: 10.1007/s11104-007-9360-z |
[63] | Subbarao G V, Nakahara K, Hurtado M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(41):17302-17307. |
[64] |
Subbarao G V, Nakahara K, Ishikawa T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant and Soil, 2008, 313(2):89-99.
doi: 10.1007/s11104-008-9682-5 |
[65] | Coskun D, Britto D T, Shi W M, et al. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 2017, 3(6):1-9. |
[66] |
Subbarao G V, Nakahara K, Ishikawa T, et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil, 2013, 366(1):243-259.
doi: 10.1007/s11104-012-1419-9 |
[67] |
Wolt J D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Mid-Western USA. Nutrient Cycling in Agroecosystems, 2004, 69(1):23-41.
doi: 10.1023/B:FRES.0000025287.52565.99 |
[68] |
Gopalakrishnan S, Watanabe T, Pearse S J, et al. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria,but not other major soil microorganisms. Soil Science and Plant Nutrition, 2009, 55(5):725-733.
doi: 10.1111/j.1747-0765.2009.00398.x |
[69] |
Cooper A B. Suppression of nitrate formation with an exotic conifer plantation. Plant and Soil, 1986, 93(3):383-394.
doi: 10.1007/BF02374289 |
[70] |
Canfield D E, Glazer A N, Falkowski P G. The evolution and future of earth’s nitrogen cycle. Science, 2010, 330(4):192-196.
doi: 10.1126/science.1186120 |
[71] |
McCarty G W. Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 1999, 29(1):1-9.
doi: 10.1007/s003740050518 |
[72] |
Weng B, Xie X Y, Yang J J, et al. Research on the nitrogen cycle in rhizosphere of Kandelia obovate under ammonium and nitrate addition. Marine Pollution Bulletin, 2013, 76(4):227-240.
doi: 10.1016/j.marpolbul.2013.08.034 |
[73] |
Shi S J, Richardson A E, O’Callaghan M, et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77(3):600-610.
doi: 10.1111/j.1574-6941.2011.01150.x |
[74] |
Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1):233-266.
doi: 10.1146/arplant.2006.57.issue-1 |
[75] | Li B, Li Y Y, Wu H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of National Academy of Sciences, 2016, 113(23):6496-6501. |
[76] | Jalonen R, Nygren P, Sierra J. Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutrition Cycling and Agroecosystem, 2009, 85(3):203-213. |
[77] |
Zhu Y H, Zhang S Z, Huang H L, et al. Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. Journal of Environmental Sciences, 2009, 21(7):920-926.
doi: 10.1016/S1001-0742(08)62362-1 |
[78] |
Yuan H Z, Zhu Z K, Liu S L, et al. Microbial utilization of rice root exudates:13C labeling and PLFA composition. Biology and Fertility of Soils, 2016, 52(5):615-627.
doi: 10.1007/s00374-016-1101-0 |
[79] |
Yin H J, Wheeler E, Phillips R P. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry, 2014, 78(6):213-221.
doi: 10.1016/j.soilbio.2014.07.022 |
[80] |
Vranova V, Rejsek K, Skene K R, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose:a review. Journal of Plant Nutrition Soil Science, 2013, 176(2):175-199.
doi: 10.1002/jpln.v176.2 |
[81] |
Michalet S, Rohr J, Warshan D, et al. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 2013, 72(3):169-177.
doi: 10.1016/j.plaphy.2013.05.003 |
[82] |
Suo B, Chen Q, Wu W X, et al. Chemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudates. Journal of General Plant Pathology, 2016, 82(2):142-148.
doi: 10.1007/s10327-016-0651-1 |
[83] |
Sun L, Lu Y F, Kronzucker H J, et al. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification. Journal of Plant Physiology, 2016, 198(1):81-88.
doi: 10.1016/j.jplph.2016.04.010 |
[84] |
Li H, Yang X R, Weng B, et al. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology and Biochemistry, 2016, 100(1):59-65.
doi: 10.1016/j.soilbio.2016.05.015 |
[85] | Roque-Malo S, Woo D K, Kumar P. Modeling the role of root exudation in critical zone nutrient dynamics. Water Resources Research, 2020, 56:1-23. |
[1] | 李旭, 付立东, 王宇, 隋鑫, 任海, 吕小红, 马畅, 杜萌, 毛艇. DEP1与NRT1.1B基因的遗传互作对水稻氮素利用的影响[J]. 作物杂志, 2021, (6): 2227 |
[2] | 吴鑫雨, 刘振洋, 李海叶, 郑毅, 汤利, 肖靖秀. 施氮和间作对蚕豆根瘤形成及氮素吸收累积的影响[J]. 作物杂志, 2021, (5): 120127 |
[3] | 高杰, 李晓荣, 封广才, 李青风, 彭秋. 贵州新老两代糯高粱品种(系)干物质及氮素积累转运差异分析[J]. 作物杂志, 2021, (5): 5056 |
[4] | 王庆彬, 聂振田, 卢洁春, 彭春娥, 张民, 孟慧, 刘治国, 耿全政. 宛氏拟青霉提取物对夏玉米产量及氮素利用的影响[J]. 作物杂志, 2021, (4): 166171 |
[5] | 刘阿康, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 高甜甜, 王玉娇, 阚茗溪, 赵广才, 常旭虹. 苗期调控对晚播小麦产量及氮素利用的影响[J]. 作物杂志, 2021, (2): 116123 |
[6] | 黄丹, 杨富文, 刘琳, 王月, 贺国强, 王洪瑞, 孙广玉, 敖红. 氮及氮素形态对烤烟叶片叶绿素光合荧光参数的影响[J]. 作物杂志, 2021, (1): 150159 |
[7] | 邸娜, 郑娜, 韩海军, 王靖, 崔超, 郑喜清. 不同向日葵品种根系分泌物对向日葵列当萌发的刺激作用[J]. 作物杂志, 2020, (6): 197201 |
[8] | 曹小闯, 李烨锋, 吴龙龙, 朱春权, 朱练峰, 张均华, 金千瑜. 有机水溶肥对水稻干物质、氮素积累和转运的影响[J]. 作物杂志, 2020, (5): 110118 |
[9] | 孙琪, 耿艳秋, 金峰, 刘丽新, 郑浣彤, 郭丽颖, 邵玺文. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响[J]. 作物杂志, 2020, (5): 119126 |
[10] | 郝凯, 贾立国, 秦永林, 樊明寿. 氮素对马铃薯源-库关系影响研究进展[J]. 作物杂志, 2020, (3): 2226 |
[11] | 陈迪文,周文灵,敖俊华,黄莹,江永,韩西红,秦益民,沈宏. 海藻提取物对甜玉米产量、品质及氮素利用的影响[J]. 作物杂志, 2020, (2): 134139 |
[12] | 石吕,薛亚光,魏亚凤,李波,石晓旭,刘建. 不同氮素粒肥水平下精米蒸煮食味品质变化及其与矿质元素含量相关性分析[J]. 作物杂志, 2019, (6): 5765 |
[13] | 师赵康,赵泽群,张远航,徐世英,王宁,王伟杰,程皓,邢国芳,冯万军. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析[J]. 作物杂志, 2019, (5): 2836 |
[14] | 闫威,李国龙,李智,曹阳,张少英. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响[J]. 作物杂志, 2019, (4): 100106 |
[15] | 崔月峰,孙国才,卢铁钢,王桂艳,王健,黄文佳,栾和林. 不同秸秆还田方式对北方超级稻氮素吸收利用的影响[J]. 作物杂志, 2019, (4): 164169 |
|