作物杂志,2022, 第6期: 226–233 doi: 10.16035/j.issn.1001-7283.2022.06.033

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

增密减氮对不同类型水稻品种颖花形成的影响

种浩天1(), 尚程1, 张运波1,2, 黄礼英1,2()   

  1. 1长江大学农学院,434025,湖北荆州
    2长江大学主要粮食作物产业化湖北省协同创新中心,434025,湖北荆州
  • 收稿日期:2021-08-02 修回日期:2021-08-16 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 黄礼英
  • 作者简介:种浩天,从事水稻高产高效栽培研究,E-mail:201971380@yangtzeu.edu.cn
  • 基金资助:
    国家自然科学基金(32001467)

Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties

Chong Haotian1(), Shang Cheng1, Zhang Yunbo1,2, Huang Liying1,2()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2021-08-02 Revised:2021-08-16 Online:2022-12-15 Published:2022-12-21
  • Contact: Huang Liying

摘要:

为了明确增密减氮栽培对不同类型水稻品种颖花形成(分化与退化)的影响以及颖花形成与产量的关系,在大田条件下采用裂-裂区试验设计,以籼粳杂交稻(甬优4949)、超级杂交籼稻(扬两优6号)和常规籼稻(黄华占)为供试材料,设置正常氮肥(180kg/hm2)和减氮(90kg/hm2)2个施氮水平,正常密度(30cm×15cm)和增密(20cm×15cm)2个移栽密度处理。结果表明,减氮轻微降低了3个品种的二次枝梗数、颖花分化数和颖花现存数,但差异均不显著;而增密显著降低了颖花分化数和颖花现存数。一次枝梗数、二次枝梗数和幼穗分化期干物质积累对颖花分化数贡献较大。就颖花生产效率而言,增密减氮能有效增加氮素、积温和辐射颖花生产效率,有利于单位面积总颖花数的提高。与扬两优6号和黄华占相比,甬优4949在增密减氮栽培下具有较高的幼穗分化期干物质积累量、颖花生产效率和颖花分化数,从而形成了大的库容,获得了高的产量。

关键词: 水稻, 氮肥, 种植密度, 籽粒产量, 颖花形成

Abstract:

In order to clarify the effects of dense planting with reduced nitrogen application on spikelet formation (differentiation and degeneration) of different types of rice varieties and the relationship between spikelet formation and yield, a field experiment with three rice varieties (Yongyou 4949, the indica-japonica hybrid variety; Yangliangyou 6, the super hybrid indica variety; Huanghuazhan, the inbred indica variety), two N levels (90 and 180kg/ha) and two planting densities (30cm×15cm and 20cm×15cm) were conducted in a split-split plot arrangement. The main results showed that the number of secondary branches, differentiated spikelets and surviving spikelets per panicle were slightly decreased caused by reduced nitrogen rate, but the differences were not significant. However, dense planting significantly reduced the number of differentiated spikelets and surviving spikelets per panicle. The number of primary and secondary branches, dry matter accumulation at panicle initiation stage contributed more to the spikelet formation. The spikelet production efficiency for nitrogen, accumulated tempearature and accumulated radiation were effectively improved under dense planting with reduced nitrogen application. Compared with Yangliangyou 6 and Huanghuazhan, Yongyou 4949 had higher grain yield under dense planting with reduced nitrogen application, which was attributed to its higher dry matter accumulation, spikelet production efficiency and differentiated spikelets.

Key words: Rice, Nitrogen fertilizer, Planting density, Grain yield, Spikelet formation

图1

水稻移栽到成熟期日平均最高温、最低温和辐射量的变化

表1

供试品种信息

品种Variety 种类Variety type 育成年份Year of release 母本Female parent 父本Male parent
甬优4949 Yongyou 4949 籼粳杂交稻 2016 甬粳49A F9249
扬两优6号Yangliangyou 6 籼型杂交稻 2005 广占63-4S 扬稻6号
黄华占Huanghuazhan 籼型常规稻 2005 黄新占 丰华占

表2

不同氮肥和密度处理下不同类型水稻的产量及其构成因素

品种
Variety
氮处理
Nitrogen
密度处理
Density
产量
Yield
(t/hm2)
有效穗数
Effective
panicle
每穗粒数
Spikelets
per panicle
总颖花
Spikelets
(×103)
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
甬优4949
Yongyou 4949
减氮 正常密度 7.75c 165.4b 270.9ab 44.5b 81.1a 21.2a
增密 9.13b 185.2ab 254.7b 46.9b 82.7a 21.3a
正常氮 正常密度 8.83b 173.4b 288.0a 49.8ab 81.5a 21.2a
增密 9.76a 213.0a 251.6b 53.3a 81.2a 21.1a
扬两优6号
Yangliangyou 6
减氮 正常密度 7.39d 174.1b 192.4a 33.4c 82.8a 26.5a
增密 9.03b 238.9a 164.4b 39.2ab 83.8a 26.6a
正常氮 正常密度 8.33c 184.5ab 209.7a 37.7b 79.0a 25.9b
增密 9.71a 224.0ab 196.0a 43.3a 80.1a 26.0b
黄华占Huanghuazhan 减氮 正常密度 6.68b 195.1b 203.7ab 39.4b 76.2a 19.5c
增密 7.36a 244.4ab 194.2b 47.0a 67.8b 20.1b
正常氮 正常密度 7.45a 212.3b 234.6a 49.9a 72.5ab 19.4c
增密 7.76a 268.5a 167.1b 44.8ab 69.2b 20.7a
氮肥处理Nitrogen treatment
减氮Reduced N rate 7.89B 200.5A 213.4A 41.7B 79.1A 22.6A
正常氮Normal N rate 8.64A 212.6A 224.5A 46.4A 77.3A 22.4B
密度处理Density treatment
正常密度Normal density 7.74B 184.1B 233.2A 42.3B 78.9A 22.3B
增密Increase density 8.79A 229.0A 204.7A 45.7A 77.5A 22.7A
品种Variety
甬优4949 Yongyou 4949 8.87A 184.2B 266.3A 48.6A 81.7A 21.2B
扬两优6号Yangliangyou 6 8.62A 205.4AB 190.6B 38.4B 81.4A 26.3A
黄华占Huanghuazhan 7.31B 230.1A 199.9B 45.3A 71.4B 19.9C
差异分析Analysis of variance
氮肥Nitrogen(N) ** ns ns ** ns *
密度Density(D) ** ** ns * ns **
品种Variety(V) ** ** ** ** ** **
氮肥×密度N×D ns ns ns ns ns ns
氮肥×品种N×V ns ns ns ns ns **
密度×品种D×V ** ns ns ns ns **
氮肥×密度×品种N×D×V ns ns ns * ns ns

表3

不同氮肥和密度处理下不同品种水稻的颖花分化和退化数

品种
Variety
氮处理
Nitrogen
treatment
密度处理
Density
treatment
一次枝梗数
Primary
branch number
二次枝梗数
Secondary
branch number
颖花现存数
Number of surviving
spikelets
颖花退化数
Number of degenerated
spikelets
颖花分化数
Number of differentiated
spikelets
甬优4949
Yongyou 4949
减氮 正常密度 17.8a 55.9a 353.9a 19.1a 373.0a
增密 18.2a 50.9a 270.6c 25.9a 296.5b
正常氮 正常密度 18.7a 58.8a 334.6b 24.6a 359.2a
增密 16.7a 46.6a 274.2c 22.6a 296.8b
扬两优6号
Yangliangyou 6
减氮 正常密度 13.2a 44.7a 246.7a 10.2a 249.7a
增密 13.9a 45.3a 247.9a 9.8a 249.6a
正常氮 正常密度 14.0a 47.8a 257.3a 12.8a 264.6a
增密 13.2a 48.4a 247.2a 8.1a 249.5a
黄华占
Huanghuazhan
减氮 正常密度 13.4a 39.0a 217.6ab 13.8a 231.3ab
增密 12.8a 42.6a 201.0b 12.0a 213.0b
正常氮 正常密度 12.1a 45.7a 241.5a 8.3a 249.8a
增密 12.7a 42.8a 218.3ab 10.4a 228.8ab
氮肥处理Nitrogen treatment
减氮Reduced N rate 14.9A 46.4A 256.3A 15.1A 271.4A
正常氮Normal N rate 14.6A 48.3A 262.2A 14.5A 276.7A
密度处理Density treatment
正常密度Normal density 14.9A 48.6A 275.2A 14.8A 290.1A
增密Increase density 14.6A 46.1A 243.2B 14.8A 258.0B
品种Variety
甬优4949 Yongyou 4949 17.8A 53.0A 308.3A 23.0A 331.4A
扬两优6号Yangliangyou 6 46.6B 249.8B 10.2B 260.0B
黄华占Huanghuazhan 12.8B 42.5B 219.6C 11.1B 230.7C
差异分析Analysis of variance
氮肥Nitrogen(N) ns ns ns ns ns
密度Density(D) ns ns ** ns **
品种Varieties(V) ** ** ** ** **
氮肥×密度N×D ns ns ns ns
氮肥×品种N×V ns ns ns ns
密度×品种D×V ns ** ns **
氮肥×密度×品种N×D×V ns ns ns

图2

每穗颖花现存数与成熟期每穗颖花数之间的关系

图3

一次枝梗数、二次枝梗数与每穗颖花分化数之间的关系

图4

幼穗分化期干物质积累与每穗颖花分化数之间的关系

表4

干物质、有效积温、积累辐射量和全氮吸收的颖花生产效率

品种
Variety
氮处理
Nitrogen
密度处理
Density
干物质
Dry
matter
weight
(g/m2)
有效积温
Effective
accumulated
temperature
(℃)
积累辐射量
Accumulated
radiation
(MJ/m2)
全氮吸收
Total
Nitrogen
uptake
(g/m2)
颖花生产效率Production efficiency of spikelets
干物质
Dry
matter
(No./g)
积温
Effective
accumulated
temperature
[No./(m2·℃)]
辐射
Accumulated
radiation
(No./MJ)
氮素
Nitrogen
(×103)
[No./(mg?N)]
甬优4949
Yongyou 4949
减氮 正常密度 1386.2c 1644.4 1455.6 13.2b 32.1a 27.0c 30.5c 3.38a
增密 1535.8b 1644.4 1455.6 13.8b 30.5a 28.5bc 32.2bc 3.39a
正常氮 正常密度 1592.8b 1687.7 1492.7 17.4a 31.3a 29.5b 33.4b 2.86b
增密 1745.0a 1698.3 1496.7 17.9a 30.6a 31.4a 35.6a 2.97b
扬两优6号
Yangliangyou 6
减氮 正常密度 1407.2c 1908.3 1662.2 12.3c 23.7a 17.5c 20.1c 2.71a
增密 1655.7a 1908.3 1662.2 14.0b 23.7a 20.5b 23.6ab 2.81a
正常氮 正常密度 1545.5b 1917.5 1674.7 16.8a 24.4a 19.7b 22.5b 2.25b
增密 1707.7a 1925.7 1709.5 16.9a 25.4a 22.5a 25.3a 2.56a
黄华占
Huanghuazhan
减氮 正常密度 1243.0c 1775.8 1558.3 11.4c 31.7b 22.2c 25.3c 3.47ab
增密 1332.9b 1775.8 1558.3 12.9b 35.3a 26.5ab 30.2ab 3.71a
正常氮 正常密度 1378.3b 1782.9 1561.1 14.9a 36.3a 28.0a 31.9a 3.35b
增密 1475.0a 1782.9 1561.1 14.9a 30.4b 25.1b 28.7b 3.00c
氮肥处理Nitrogen
减氮Reduced N rate 1426.8B 1776.2 1558.7 12.9B 29.5A 23.7B 27.0B 3.25A
正常氮Normal N rate 1574.0A 1799.2 1582.6 16.5A 29.7A 26.0A 29.6A 2.83B
密度处理Density
正常密度Normal density 1425.5B 1786.1 1567.4 14.3A 29.9A 24.0B 27.3B 3.00A
增密Increase density 1575.4A 1789.2 1573.9 15.1A 29.30A 25.7A 29.3A 3.07A
品种Varieties
甬优4949 Yongyou 4949 1564.9A 1668.7 1475.1 15.6A 31.1B 29.1A 32.9A 3.15A
扬两优6号Yangliangyou 6 1579.0A 1914.9 1677.2 15.0A 24.3C 20.0C 22.9C 2.58B
黄华占Huanghuazhan 1357.3B 1779.3 1559.7 13.5B 33.4A 25.4B 29.0B 3.38A
差异分析Analysis of variance
氮肥Nitrogen(N) ** ** ns ** ** **
密度Density(D) ** ns ns * * ns
品种Varieties(V) ** * ** ** ** **
氮肥×密度N×D ns ns ns * * ns
氮肥×品种N×V ns ns ns ns ns ns
密度×品种D×V ns ns ns ns ns ns
氮肥×密度×品种N×D×V ns * * * *
[1] 松岛省三, 和田原七, 田中孝幸, 等. 水稻高产原理的探索与验证. 广西农业科学, 1964(5):45-49.
[2] Xue Y G, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1):271-284.
doi: 10.2135/cropsci2012.06.0360
[3] 刘梦红, 杜春颖, 杨锡铜, 等. 土壤肥力和氮肥运筹对寒地水稻产量、品质及氮肥利用的影响. 河南农业科学, 2019, 48(2):25-34.
[4] 李超, 肖小平, 唐海明, 等. 减氮增密对机插双季稻生物学特性及周年产量的影响. 核农学报, 2019, 33(12):2451-2459.
doi: 10.11869/j.issn.100-8551.2019.12.2451
[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1):3-8.
doi: 10.1626/pps.12.3
[6] Peng S B, Khush G S, Virk P, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108:32-38.
doi: 10.1016/j.fcr.2008.04.001
[7] 张志才, 王云川. 江苏省籼稻品种更替过程中产量性状的变化特征. 中国稻米, 2006(3):16-18.
[8] Wei H H, Meng T Y, Li C, et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/ indica hybrids,indica hybrids,and japonica conventional varieties. Field Crops Research, 2017, 204:101-109.
doi: 10.1016/j.fcr.2017.01.001
[9] 王之旭, 姜秀英, 韩勇. 辽宁省不同时期水稻主栽品种特征比较分析. 辽宁农业科学, 2015(3):20-22.
[10] 戚昌瀚. 水稻品种的源库关系与调节对策简论. 江西农业大学学报, 1993(1):1-5.
[11] 单玉华, 王海候, 龙银成, 等. 不同库容量类型水稻在氮素吸收利用上的差异. 扬州大学学报(农业与生命科学版), 2004, 25(1):41-45.
[12] 姚友礼, 王余龙. 水稻大穗形成机理的研究. 江苏农学院学报, 1995, 16(2):11-16.
[13] Yoshida H, Horie T, Shiraiwa T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Research, 2006, 97(2):337-343.
doi: 10.1016/j.fcr.2005.11.004
[14] Yoshinaga S, Takai T, Arai-Sanoh Y, et al. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Research, 2013, 150(15):74-82.
doi: 10.1016/j.fcr.2013.06.004
[15] 王亚梁, 张玉屏, 向镜, 等. 籼稻颖花分化与退化对不同播期温光的响应. 应用生态学报, 2017, 28(11):3571-3580.
doi: 10.13287/j.1001-9332.201711.010
[16] Ansari T H, Yamamoto Y, Yoshida T, et al. Cultivars differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Science and Plant Nutrition, 2003, 49(3):433-444.
doi: 10.1080/00380768.2003.10410029
[17] Huang L Y, Yang D S, Li X X, et al. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 2019, 233:49-58.
doi: 10.1016/j.fcr.2019.01.005
[1] 周浩, 邱先进, 徐建龙. 磁化水灌溉对农作物生长发育影响的研究进展[J]. 作物杂志, 2022, (6): 1–6
[2] 杨妍, 徐宁生, 潘哲超, 李燕山, 杨琼芬, 张磊. 多效唑和氮肥对马铃薯产量及经济效益的影响[J]. 作物杂志, 2022, (6): 139–144
[3] 秦猛, 崔士泽, 何孝东, 翟玲侠, 陶博, 王召君, 赵海成, 李红宇, 郑桂萍, 刘丽华. 秸秆膨化还田对水稻产量、品质及土壤养分的影响[J]. 作物杂志, 2022, (6): 159–166
[4] 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186–192
[5] 姜树坤, 王立志, 杨贤莉, 张喜娟, 刘凯, 迟力勇, 李锐, 来永才. 1961-2019年松嫩平原盐碱地区域水稻生长季气候资源的时空变化特征分析[J]. 作物杂志, 2022, (6): 214–219
[6] 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 42–53
[7] 赵斌, 季昌好, 孙皓, 朱斌, 王瑞, 陈晓东. 多棱饲用大麦品系粮、草产量及品质的鉴定与综合评价[J]. 作物杂志, 2022, (6): 93–97
[8] 石必显, 陶建飞, 高燕, 谢会红, 阿卜力米提·艾尔肯, 程平山, 麦提图尔荪·萨迪克, 沙红. 不同种植密度对3个复播食葵品种植株形态及产量的影响[J]. 作物杂志, 2022, (5): 195–200
[9] 李睿, 董立强, 商文奇, 于广星, 代贵金, 王铮, 李跃东. 水稻苗期不同喷淋间隔处理对其生长发育及产量的影响[J]. 作物杂志, 2022, (5): 249–254
[10] 董林林, 沈明星, 施林林, 沈园, 王海候, 陆长婴. 生物质炭配施蚯蚓粪对水稻产量及养分吸收的影响[J]. 作物杂志, 2022, (5): 69–77
[11] 周宇娇, 张伟杨, 杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志, 2022, (4): 1–8
[12] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[13] 孙庆圣, 原程, 张玉先. 减施氮肥和接种根瘤菌对黑大豆光合特性及产量的影响[J]. 作物杂志, 2022, (4): 132–137
[14] 郑思怡, 杨晔, 宋远辉, 花芹, 林泉祥, 张海涛, 程治军. 水稻甜质胚乳突变体m5788的鉴定及基因定位[J]. 作物杂志, 2022, (4): 14–21
[15] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!