作物杂志,2023, 第6期: 174–180 doi: 10.16035/j.issn.1001-7283.2023.06.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

水氮互作对花针期花生生理特性及生长的影响

修俊杰(), 刘学良()   

  1. 铁岭市农业科学院,112000,辽宁铁岭
  • 收稿日期:2022-06-27 修回日期:2022-07-15 出版日期:2023-12-15 发布日期:2023-12-15
  • 通讯作者: 刘学良,主要从事花生育种及栽培研究,E-mail:lxliang0@yeah.net
  • 作者简介:修俊杰,主要从事花生育种及栽培研究,E-mail:544707915@qq.com
  • 基金资助:
    农业攻关及产业化优质、高产花生增产提效关键技术研究与集成应用(2020JH2/10200010)

Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage

Xiu Junjie(), Liu Xueliang()   

  1. Tieling Academy of Agricultural Sciences, Tieling 112000, Liaoning, China
  • Received:2022-06-27 Revised:2022-07-15 Online:2023-12-15 Published:2023-12-15

摘要:

为明确花针期水氮互作对花生生理特性及生长的影响,试验于铁岭市花生示范基地防雨棚中进行,设正常灌水和花针期干旱处理,副处理设0、90、180kg/hm2(分别为N0、N1、N2)共3个氮水平,研究水、氮互作对花生植株性状指标、内源保护酶活性等的影响。结果表明,与对照相比,干旱处理的各性状指标、过氧化氢酶(CAT)活性、可溶性蛋白质含量、根系活力和干物质重降低,叶片超氧化物歧化酶(SOD)和过氧化物酶(POD)活性、丙二醛(MDA)和脯氨酸(Pro)含量、根冠比(R/S)增大。N1处理最有利于植株抗旱性的整体提高,N0和N2处理则表现相反。复水后10d,干旱处理的花生内源保护酶活性、可溶性蛋白质、MDA、Pro含量迅速恢复至正常处理水平,但根系活力和干物质重仍低于正常处理水平。并且施氮肥有利于提高干旱处理的各性状指标,如花生叶片内源保护酶活性、可溶性蛋白质和Pro含量、根系活力、干物质重、R/S和水分胁迫指数。综上,N1处理较适宜,耐旱性较好。因此,可以通过施氮肥提高花生的抗氧化能力,进而提高抗旱性。

关键词: 花生, 花针期, 水氮互作, 生理特性

Abstract:

To clarify the effects of water and nitrogen interaction on physiological characteristics and growth of peanut during the pod-pin stage, the changes of traits of peanut plants, endogenous protective enzyme activity, soluble protein, MDA, root activity and dry matter weight in peanut leaves were examined with soil water stress. The experiment was conducted by a normal irrigation with a short drought treatment under the rainproof shelter of Tieling peanut demonstration base and each treatment was imposed by three nitrogen levels: 0, 90, 180kg N/ha (N0, N1, N2). The results showed that, compered with control, the character indexes of peanut, the activity of CAT, solube protein content, root activity, and dry matter weight were reduced; SOD and POD activity, MDA and proline content, the root/shoot ratio (R/S) were increased. The drought resistant of peanut with N1 treatment had a good performance, and the N0 and N2 had a opposite performance. Ten days after rehydration, the endogenous protective enzyme activities, soluble protein, MDA and proline contents recovered rapidly, but root activity and dry matter weight were showed still lower than normal water treatment levels. In addition, N application could promote the traits of peanut plants, such as endogenous protective enzyme activities, soluble protein and proline content, root ability, dry matter weight, R/S, and reduced water stress index. To sum up, N1 treatment was the most suitable N application for the drought stress, and the antioxidant ability of peanut can be improved by optimal application of nitrogen fertilizer, and then enhance the drought resistance.

Key words: Peanut, Pod-pin stage, Water and nitrogen interaction, Physiological characteristics

表1

花针期水氮互作对花生土壤相对含水量的影响

水分处理
Water treatment
T1 T2
N0 N1 N2 N0 N1 N2
干旱处理
Drought-stress
32.75c 25.19c 19.31c 77.15c 78.13c 76.83c
正常灌水
Well-watering
75.95a 72.87a 72.12a 75.04a 74.78a 74.01a

表2

花针期水氮互作对花生植株性状的影响

水分处理
Water
treatment
氮素水平
Nitrogen
level
T1 T2
根长
Root length
(cm)
主茎高
Main stem
height (cm)
侧枝长
Branch
length (cm)
分枝数
Branch
number
主茎叶数
Main stem
leaves
根长
Root length
(cm)
主茎高
Main stem
height (cm)
侧枝长
Branch
length (cm)
分枝数
Branch
number
主茎叶数
Main stem
leaves
干旱处理
Drought-stress
N0 27.5f 16.4e 18.1f 5.9d 12.9e 31.1e 18.2f 20.4e 6.3e 13.5e
N1 30.9d 21.2c 23.8d 7.3c 13.8d 35.5c 24.9d 26.8c 8.2c 14.9d
N2 34.7b 25.5b 29.1b 8.2b 15.2b 40.1a 30.5b 32.4b 9.4b 16.4b
正常灌水
Well-watering
N0 28.6e 19.1d 20.9e 6.2d 13.1e 30.7e 20.8e 23.7d 6.8d 14.1e
N1 32.3c 25.3b 28.2c 8.2b 14.5c 34.2d 29.2c 31.8b 9.3b 15.7c
N2 36.8a 30.8a 35.4a 9.5a 16.1a 38.4b 36.3a 38.7a 10.8a 17.8a

图1

花针期水氮互作对SOD活性的影响 不同小写字母表示处理间在5%水平差异显著,下同

图2

花针期水氮互作对POD活性的影响

图3

花针期水氮互作对CAT活性的影响

图4

花针期水氮互作对可溶性蛋白质含量的影响

图5

花针期水氮互作对MDA含量的影响

图6

花针期水氮互作对Pro含量的影响

图7

花针期水氮互作对根系活力的影响

表3

花针期水氮互作对花生干物质积累量的影响

水分处理
Water
treatment
氮素水平
Nitrogen
level
T1 T2
干物质积累量
Dry matter accumulation (g)
根冠比
Root/shoot
水分胁迫指数
Water stress index
干物质积累量
Dry matter accumulation (g)
根冠比
Root/shoot
水分胁迫指数
Water stress index
干旱处理
Drought-stress
N0 192.2b 0.085a 0.071c 327.1c 0.075b 0.092a
N1 255.1a 0.077b 0.109b 416.8b 0.076b 0.075b
N2 269.3a 0.078b 0.143a 475.3a 0.078a 0.053c
正常灌水
Well-watering
N0 206.8c 0.084a 360.3c 0.062d
N1 286.3b 0.076b 450.8b 0.063d
N2 314.2a 0.077b 502.1a 0.065c
[1] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 油料资源, 2020, 11(45):116-122.
[2] 郝西, 张俊, 丁红, 等. 不同花生品种抗旱性评价. 花生学报, 2020, 49(4):47-51.
[3] 张艳正. 不同耐性花生品种响应干旱胁迫的机理研究. 沈阳:沈阳农业大学, 2018.
[4] Mackay A. Climate change 2007:impacts,adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Journal of Environmental Quality, 2008, 37(6):2407.
doi: 10.2134/jeq2008.0015br
[5] 丁红, 张智猛, 戴良香, 等. 干旱胁迫对花生生育中后期根系生长特征的影响. 中国生态农业学报, 2013, 21(12):1477-1483.
[6] 姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响. 作物学报, 2004, 30(2):169-174.
[7] Sun L, Hu R, Shen G, et al. Genetic engineering peanut for higher drought and salt tolerance. Food and Nutrition Sciences, 2013, 4(6):1-7.
[8] 赵小波, 张廷婷, 闫彩霞, 等. 花生中三个LEA基因的克隆与表达分析. 花生学报, 2016, 45(4):14-19.
[9] 陈容钦, 舒文, 葛奎, 等. 干旱胁迫训练对花生生长及胁迫相关基因表达的影响. 植物生理学报, 2017, 53(10):1921-1927.
[10] Abid M, Tian Z, Tahir A, et al. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sciences, 2016, 7:981.
[11] 李广浩, 刘平平, 赵斌, 等. 不同水分条件下控释尿素对夏玉米产量和叶片衰老特性的影响. 应用生态学报, 2017, 28(2):571-580.
[12] 刘艳, 汪仁, 华利民, 等. 施氮量对玉米生育后期叶片衰老与保护酶系统的影响. 玉米科学, 2012, 20(2):124-127.
[13] 王慧, 李鑫, 陈梦妮. 水氮配合对不同耐旱性红小豆根际土壤酶活性的影响. 山西农业科学, 2020, 48(11):1812-1819.
[14] Du J, Shen T H, Xiong Q Q, et al. Combined proteomics, metabolomics and physiological analyses of rice growth and grain with heavy nitrogen application before and after drought. BMC Plant Biology, 2020, 20(1):556.
doi: 10.1186/s12870-020-02772-y
[15] 李鑫鑫, 刘洪光, 林恩. 基于15N示踪技术的干旱区滴灌葡萄氮素利用分析. 核农学报, 2020, 34(11):2551-2560.
doi: 10.11869/j.issn.100-8551.2020.11.2551
[16] 石珊珊, 周苏玫, 尹钧, 等. 高产水平下水肥耦合对小麦旗叶光合特性及产量的影响. 麦类作学报, 2013, 33(3):549-554.
[17] 胡云平, 张静, 刘丹. 水肥耦合对春小麦叶片生态特性及产量的影响. 江苏农业科学, 2017, 45(12):48-52.
[18] 胡梦芸, 门福圆, 张颖君, 等. 水氮互作对作物生理特性和氮素利用影响的研究进展. 麦类作物学报, 2016, 36(3):332-340.
[19] 吕广德, 王超, 靳雪梅, 等. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31(8):2593-2603.
doi: 10.13287/j.1001-9332.202008.029
[20] Maranov A, Samedovam A, Shirvany T. Root-shoot relationships in plant adaptation to nitrogen deficiency develop. Plant Soil Science, 82:147-154.
[21] 张国盛, 张仁陟, 黄高宝. 水分胁迫条件下春小麦根系对施肥的响应. 草业学报, 2003, 12(3):105-109.
[22] 张凤翔, 周明耀, 周春林, 等. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5):197-200.
[23] 张立军, 樊金娟. 植物生理学实验教程. 北京: 中国农业大学出版社, 2007.
[24] Pinheiro C, Passarinho J A, Ricardo C P. Effects of drought and re-watering on the metabolism of Lupinus albus organs. Journal of Plant Physiology, 2004, 161:1203-1210.
doi: 10.1016/j.jplph.2004.01.016 pmid: 15602812
[25] Burgess S S O, Turner N C, White D A, et all. Tree roots:Conduits for deep recharge of soil water. Oecologia, 2001, 126:158-165.
doi: 10.1007/s004420000501
[26] Jiang Y W, Huang B R. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 2001, 41(2):436-442.
doi: 10.2135/cropsci2001.412436x
[27] 张立新, 李生秀. 氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响. 作物学报, 2007, 33(3):482-490.
[28] Saneoka H, Moghaieb R E, Premcahandra G S, et al. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relation in Agrostis palustris Huds. Environmental and Experimental Botany, 2004, 52:131-138.
doi: 10.1016/j.envexpbot.2004.01.011
[29] 章崇玲, 曾国平, 陈建勋. 干早胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响. 植物资源与环境学报, 2000, 9(4):23-26.
[1] 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 7–15
[2] 牛瀚晖, 魏晓凯, 俞世康, 顾会战, 何佶弦, 张启莉, 李俊举, 景延秋, 雷强. 外源水杨酸对低温胁迫下烤烟幼苗生理特性的影响[J]. 作物杂志, 2023, (2): 151–156
[3] 王文霞, 吴自明, 曾勇军, 潘晓华, 石庆华, 曾研华. 水氮耦合对直播早籼稻苗期低温冷害的调控效应[J]. 作物杂志, 2023, (2): 83–90
[4] 陈东, 邹静, 郭刚刚, 代文典, 宋绍光, 黄莺. 不同规格育苗盘对烟苗素质及主要生理特性的影响[J]. 作物杂志, 2023, (1): 129–135
[5] 张盼盼, 武熊, 纪江涛, 王小林. EDTA对铬胁迫下黄瓜幼苗生长及生理特性的影响[J]. 作物杂志, 2023, (1): 196–200
[6] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
[7] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
[8] 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255–260
[9] 邹小云, 官梅, 官春云. 甘蓝型油菜氮素高效吸收的植株形态与生理特性研究[J]. 作物杂志, 2022, (5): 97–103
[10] 崔亚男, 张曼, 张朋磊, 刘兵, 郝西, 臧秀旺. H2O2对吸胀冷害下花生种子萌发的影响[J]. 作物杂志, 2022, (4): 236–241
[11] 董伟欣, 张月辰. 水氮互作对不同小麦品种生理参数及产量形成的影响[J]. 作物杂志, 2022, (3): 125–133
[12] 云菲, 任天宝, 殷全玉, 靳双珍, 郑聪, 金磊, 李静静, 刘国顺, 杨喜田. 叶面喷施钙素对光胁迫条件下烤烟光合生理特性的调控效应[J]. 作物杂志, 2022, (2): 143–152
[13] 梁海燕, 李海, 丁超, 杨芳, 宋晓强, 邓亚蕊, 刘贵山, 林凤仙, 张翔宇, 苏占明, 姜超. 钾肥对糜子茎秆形态、力学、生理特性及抗倒伏能力的影响[J]. 作物杂志, 2021, (6): 177–181
[14] 刘卫星, 范小玉, 张枫叶, 贺群岭, 陈雷, 李可, 吴继华. 不同前茬和种衣剂用量对花生病虫害及产量的影响[J]. 作物杂志, 2021, (6): 199–204
[15] 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 1–5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!