作物杂志,2022, 第3期: 125–133 doi: 10.16035/j.issn.1001-7283.2022.03.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

水氮互作对不同小麦品种生理参数及产量形成的影响

董伟欣1(), 张月辰2()   

  1. 1河北开放大学,050080,河北石家庄
    2河北农业大学农学院/华北作物改良与调控国家重点实验室,071001,河北保定
  • 收稿日期:2021-03-13 修回日期:2021-08-09 出版日期:2022-06-15 发布日期:2022-06-20
  • 通讯作者: 张月辰
  • 作者简介:董伟欣,主要从事作物栽培生理学研究,E-mail: dongweixin.yuxin@163.com
  • 基金资助:
    “十三五”国家重点研发计划课题三“太行山山前平原小麦–玉米节水高产增效栽培技术集成与示范”(2018YFD0300503)

Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties

Dong Weixin1(), Zhang Yuechen2()   

  1. 1Hebei Open University, Shijiazhuang 050080, Hebei, China
    2College of Agronomy, Hebei Agricultural University/State Key Laboratory for Crop Improvement and Regulation in North China, Baoding 071001, Hebei, China
  • Received:2021-03-13 Revised:2021-08-09 Online:2022-06-15 Published:2022-06-20
  • Contact: Zhang Yuechen

摘要:

为明确河北山前平原区合理的小麦水氮互作方式,以济麦22(JM-22)和藁优2018(GY-2018)为材料,设置高氮/高水(GD/GS)、中氮/高水(ZD/GS)、低氮/高水(DD/GS)、高氮/中水(GD/ZS)、中氮/中水(ZD/ZS)、低氮/中水(DD/ZS)、高氮/低水(GD/DS)、中氮/低水(ZD/DS)和低氮/低水(DD/DS)9个处理,研究水氮互作对不同小麦品种生理参数和产量形成的影响。结果表明,随着水氮量的增加,株高、旗叶面积和地上部干重增加,旗叶面积成熟期在ZD处理下最大,且GS>ZS>DS,GY-2018的植株生长和干物质积累量高于JM-22。此外,水氮越多,2个品种的叶绿素相对含量(SPAD)越大,各处理均表现出GD>ZD>DD的变化趋势,而GS、ZS和DS在3个时期无明显变化规律,2个品种相比较,JM-22的SPAD值较大,可溶性蛋白和可溶性糖含量均表现为GD>ZD>DD,而后期ZD处理最高,且GS>ZS>DS,GY-2018较JM-22更有利于碳水化合物的积累,丙二醛和活性氧含量随着施氮量的增加而降低,而超氧化物歧化酶和过氧化物酶活性却升高,但不同灌水量使酶活性在不同时期的变化不同,GY-2018的酶活性更高,有利于延缓后期叶片衰老。产量及其构成因素均表现为ZD处理下最高,且GS>ZS>DS,JM-22在ZD/GS处理下的氮肥生产效率和水分利用效率最高,产量也最高,为9927.78kg/hm2,较GY-2018提高10.07%。综上,ZD/GS(210kg/hm2,1200m3/hm2)是最理想的水氮互作方式。

关键词: 小麦, 水氮互作, 生长特性, 生理参数, 产量形成

Abstract:

To investigate a reasonable water-nitrogen interaction model at mountain front plain area in Hebei province and provide theoretical support for wheat development in that location, the influence of water-nitrogen interaction on physiological parameters and yield formation of different wheat varieties using Jimai 22 (JM-22) and Gaoyou 2018 (GY-2018) as materials were investigated and GD/GS, ZD/GS, DD/GS, GD/ZS, ZD/ZS, DD/ZS, GD/DS, ZD/DS, and DD/DS nine treatments were set. The results showed that with the increasing of water nitrogen, plant height, flag leaf area and aboveground dry weight became larger, flag leaf area was the largest under ZD treatment in maturation stage, GS>ZS>DS, moreover, plant growth and dry matter accumulation of GY-2018 were higher than that of JM-22. In addition, the more water and nitrogen, the greater SPAD value of two varieties and then each treatment showed GD>ZD>DD, while GS, ZS and DS had no distinct change in three stages, SPAD value of JM-22 was large. Soluble protein and sugar contents were showed GD>ZD>DD, but the highest in the later stage was ZD treatment, GS>ZS>DS, furthermore, GY-2018 was more conducive to carbohydrate accumulation than that of JM-22. Malonyldialdehyde and reactive oxygen contents decreased with the increasing of nitrogen application, but superoxide dismutase and peroxidase enzyme activities increased, however, the changes of enzyme activities at different stages were different with different irrigation amount, GY-2018 was higher, which was helpful to delay senescence of leaves in later stage. The yield and its components showed the highest under ZD treatment, and GS>ZS>DS, besides JM-22 nitrogen fertilizer production efficiency and water use efficiency under ZD/GS treatment was the highest, and with the highest yield of 9927.78kg/ha, which increased 10.07% compared with GY-2018. From these results, it was concluded that ZD/GS (210kg/ha, 1200m3/ha) was the most suitable mode of water and nitrogen interaction.

Key words: Wheat, Water-nitrogen interactions, Growth characteristics, Physiological parameters, Yield formation

表1

水氮互作对小麦株高、旗叶面积和地上部干重的影响

指标
Index
处理
Treatment
JM-22 GY-2018
开花期
Flowering
stage
灌浆期
Filling
stage
成熟期
Maturation
stage
开花期
Flowering
stage
灌浆期
Filling
stage
成熟期
Maturation
stage
株高
Plant height (cm)
GD/GS 79.58±7.11a 81.28±5.86a 83.44±3.82a 83.00±2.31a 83.07±4.26a 83.67±3.21a
ZD/GS 79.17±2.55a 80.39±3.33ab 80.61±3.15b 81.50±3.67ab 81.67±2.71a 81.95±2.67ab
DD/GS 79.06±5.39a 80.06±2.88ab 80.22±3.69b 79.17±2.51d 80.28±2.65a 80.78±2.79bc
GD/ZS 78.89±3.38a 79.89±2.61ab 79.67±3.65b 82.61±3.45a 82.67±4.00a 82.78±3.59a
ZD/ZS 78.00±3.38a 79.56±2.36ab 79.11±3.23bc 82.57±3.05a 82.64±2.38a 82.75±2.95a
DD/ZS 78.61±3.29a 77.83±3.88b 78.28±2.87bcd 82.56±3.17a 82.22±1.83a 81.62±2.48ab
GD/DS 78.44±2.18a 79.67±3.66ab 78.67±2.95bcd 81.28±2.63abc 81.50±3.29a 81.78±1.48a
ZD/DS 77.89±4.11a 78.89±2.42ab 77.11±2.89cd 80.22±2.91bcd 80.74±2.91a 80.77±3.09bc
DD/DS 77.56±2.79a 78.28±5.89ab 76.28±5.14d 79.28±2.24cd 80.67±2.99a 78.83±3.62c
旗叶面积
Flag leaf area (cm2)
GD/GS 15.98±3.25a 16.42±2.48a 17.03±3.63ab 18.35±3.18a 18.96±4.08a 19.53±2.85a
ZD/GS 15.83±3.31a 16.61±2.39a 19.81±4.05a 17.31±2.91ab 18.57±3.49a 19.92±3.66a
DD/GS 15.21±2.66a 15.22±4.03a 16.97±3.11ab 16.81±2.91ab 18.49±2.87a 18.91±3.13ab
GD/ZS 15.31±2.20a 16.31±3.01a 17.79±4.76ab 18.35±2.62a 18.89±4.25a 19.91±3.52a
ZD/ZS 15.06±3.77a 16.20±3.50a 19.21±3.45a 17.79±4.64ab 17.99±4.41a 19.19±2.47ab
DD/ZS 14.15±3.69a 15.28±4.14a 15.40±3.44b 17.41±4.45ab 17.96±2.86a 18.63±2.86ab
GD/DS 15.73±3.67a 16.51±2.56a 17.89±3.68ab 17.35±3.29ab 17.64±3.75a 17.77±3.94b
ZD/DS 15.23±4.12a 16.19±4.01a 18.12±3.21ab 16.81±3.79ab 17.69±4.51a 18.47±4.58ab
DD/DS 14.84±3.55a 15.98±3.49a 15.91±4.10ab 15.93±3.38b 16.98±3.64a 17.22±2.41b
地上部干重
Dry weight of aboveground (g)
GD/GS 2.49±0.02a 4.59±1.21a 6.16±0.89a 4.31±0.67a 5.69±0.29a 7.29±1.51a
ZD/GS 2.34±0.53a 4.11±0.39a 6.05±0.17a 3.91±0.51a 5.17±0.56ab 6.92±1.03a
DD/GS 2.29±0.25a 4.09±0.18a 5.49±0.37a 3.88±0.89a 4.46±0.67bc 6.75±1.79a
GD/ZS 2.34±0.35a 4.08±0.27a 5.44±0.68a 3.48±0.37ab 4.24±1.21bc 6.47±0.98a
ZD/ZS 2.11±0.39a 3.93±0.57a 5.33±0.17a 2.78±0.52bc 4.21±0.49bc 6.25±0.19a
DD/ZS 2.09±0.26a 3.84±0.38a 5.23±0.59a 2.69±0.33bc 4.08±0.29bc 6.22±1.36a
GD/DS 2.06±0.38a 3.48±0.89a 5.21±0.82a 2.29±0.19c 3.90±0.88c 6.11±0.51a
ZD/DS 1.97±0.41a 3.47±0.98a 5.08±1.08a 2.14±0.14c 3.75±0.59c 5.82±0.75a
DD/DS 1.94±0.02a 3.33±0.31a 5.01±1.07a 2.11±0.46c 3.68±0.61c 5.59±0.27a

图1

水氮互作对小麦旗叶SPAD值的影响 不同小写字母表示0.05水平差异显著,下同

图2

水氮互作对小麦旗叶可溶性蛋白和可溶性糖含量的影响

图3

水氮互作对小麦旗叶SOD和POD活性的影响

图4

水氮互作对小麦旗叶MDA和ROS含量的影响

表2

水氮互作及不同因素互作效应对产量及其构成因素的影响

品种
Variety
处理
Treatment
穗数
Spike number
(×104/hm2)
穗粒数
Grain number
per spike
穗粒重
Grain weight
per spike(g)
千粒重
1000- grain
weight (g)
产量
Yield
(kg/hm2)
JM-22 GD/GS 761.14±122.71d 34.4±4.99abc 1.77±0.26ab 50.43±2.12ab 9483.34±543.35abc
ZD/GS 876.87±68.93bcd 36.2±7.42a 1.87±0.41a 54.80±3.61a 9927.78±618.43a
DD/GS 803.43±20.39cd 34.7±4.02ab 1.71±0.22ab 48.43±1.78abc 9261.12±823.17abc
GD/ZS 815.67±57.27bcd 29.7±3.09c 1.49±0.28bc 46.70±4.35bc 9261.12±504.23abc
ZD/ZS 879.09±72.01bcd 33.8±3.26abc 1.61±0.31abc 49.97±1.33ab 9816.67±301.11ab
DD/ZS 763.37±44.46cd 31.2±3.46bc 1.46±0.24bc 42.83±1.69bc 9038.89±613.23abcd
GD/DS 931.39±33.88ab 31.3±3.19bc 1.46±0.19bc 45.03±6.02bc 8816.67±315.66bcd
ZD/DS 1021.53±85.18a 31.5±6.47abc 1.54±0.27bc 48.77±2.45abc 8705.56±334.21cd
DD/DS 886.88±75.12bc 30.7±4.11bc 1.39±0.29c 41.13±7.68c 8038.89±314.31d
GY-2018 GD/GS 1159.52±100.01ab 29.4±4.88ab 1.58±0.18ab 51.60±1.51a 8816.67±314.41a
ZD/GS 1187.33±141.96a 33.0±6.15a 1.61±0.32a 53.00±2.61a 8927.78±408.35a
DD/GS 921.38±53.73c 28.8±3.58ab 1.48±0.21abc 50.83±1.55a 8594.46±334.31a
GD/ZS 1003.73±36.77abc 30.2±3.33a 1.49±0.22abc 48.53±0.83ab 8372.23±314.31ab
ZD/ZS 1015.97±138.46abc 31.4±5.99a 1.51±0.32abc 51.37±1.96a 8483.34±303.22ab
DD/ZS 954.76±157.43bc 27.7±4.64ab 1.45±0.21abc 46.40±5.41ab 8261.12±539.21ab
GD/DS 949.19±117.99bc 26.8±3.46ab 1.29±0.31c 47.40±5.65ab 7261.12±519.21bc
ZD/DS 992.59±34.26abc 28.7±6.21ab 1.33±0.24bc 49.53±1.33ab 7816.64±467.56ab
DD/DS 925.83±132.12c 23.9±4.78b 1.04±0.40d 44.00±4.73b 6483.34±348.37c
变量来源
Variable source
品种 *** *** ** ns ***
ns *** ** *** ***
** * ns *** **
品种×水 ** ns ns ns ns
品种×氮 ns ns ns ns ns
水×氮 ns ** ** * **
品种×水×氮 ns ns ns ns ns

图5

水氮互作对小麦氮肥生产效率和水分利用效率的影响

[1] Yang X L, Gao W S, Shi Q H, et al. Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agricultural Water Management, 2013, 124(2):20-27.
doi: 10.1016/j.agwat.2013.03.017
[2] 宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析. 干旱区研究, 2005, 22(2):162-166.
[3] 串丽敏, 何萍, 赵同科, 等. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26(1):76-86.
[4] 赵连佳, 薛丽华, 孙乾坤, 等. 不同水氮处理对滴灌冬小麦田耗水特性及水氮利用效率的影响. 麦类作物学报, 2016, 36(8):1050-1059.
[5] 丁继君, 栗丽, 王旭钰. 水肥藕合对冬小麦生长和产量的影响. 山西水土保持科技, 2014(4):12-14.
[6] 王磊, 董树亭, 刘鹏, 等. 水氮互作对冬小麦光合生理特性和产量的影响. 水土保持学报, 2018, 32(3):301-308.
[7] 吕广德, 王超, 靳雪梅, 等. 水氮互作对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 3(5):1-13.
[8] 赵芳华, 张树华, 郭程瑾, 等. 限水灌溉下春季追氮方式对小麦旗叶光合和衰老特性的影响. 植物营养与肥料学报, 2009, 15(2):247-254.
[9] 冉文星. 滴灌小麦水氮耦合的生理调控效应研究. 阿拉尔:塔里木大学, 2016.
[10] 董博, 于显枫, 张绪成, 等. 水氮互作对春小麦植株养分含量及产量的影响. 西北农业学报, 2011, 20(6):90-95.
[11] 曹勇, 姬虎太, 裴雪霞, 等. 水氮运筹对中筋冬小麦‘临Y7287’产量和品质的影响. 中国农学通报, 2016, 32(27):42-46.
[12] Read S M, Northcote D H. Minimization of variation in the response to different proteins of the coomassie blue G dye-binding assay for protein. Analytical Biochemistry, 1981, 116(1):53-64.
pmid: 7304986
[13] 白宝璋, 靳占忠, 李存东. 植物生理学试验教程. 北京: 中国农业科技出版社, 1996:61-62.
[14] 韩胜芳, 邓若磊, 徐海荣, 等. 缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性. 应用生态学报, 2007, 18(11):2462-2467.
[15] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[16] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidate and glutathione ruductase in bean leaves. Plant Physiology, 1992, 98:1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779
[17] 董博, 于显枫, 郭天文, 等. 水氮互作对春小麦不同生育期植株性状及产量的影响. 甘肃农业科技, 2011(1):5-9.
[18] 金修宽, 赵同科. 测墒补灌和施氮对冬小麦产量及氮素吸收分配的影响. 水土保持学报, 2017, 31(2):233-239.
[19] 谷艳芳, 丁圣彦, 高志英, 等. 干旱胁迫下冬小麦光合产物分配格局及其与产量的关系. 生态学报, 2010, 30(5):1167-1173.
[20] 郭丽. 水氮耦合对冬小麦―夏玉米生理特性及产量影响的研究. 保定:河北农业大学, 2010.
[21] 于显枫. 水氮互作对小麦生理特性及产量的影响. 兰州:甘肃农业大学, 2008.
[22] 周萍, 陈志国, 庄丽, 等. 水氮互作对滴灌春小麦渗透调节物及产量的影响. 石河子大学学报(自然科学版), 2013, 31(4):425-429.
[23] 王小燕, 王东, 于振文. 水氮互作对小麦旗叶光合特性、籽粒产量及氮素和水分利用率的影响. 干旱地区农业研究, 2009, 27(6):17-22.
[24] Pan F F, Li H, Li P P, et al. Effects of supplemental irrigation based on testing soil moisture and nitrogen fertilization amount on the yield and nitrogen uptake of winter wheat. Agricultural Science and Technology, 2014, 15(5):817-820,823.
[25] 黄玲, 杨文平, 胡喜巧, 等. 水氮互作对冬小麦耗水特性和氮素利用的影响. 水土保持学报, 2016, 30(2):168-174.
[1] 孙允超, 彭科研, 冯盛烨, 冀传允, 吕鹏, 鞠正春. 宽幅精播中行距与幅宽对小麦干物质积累与分配的影响[J]. 作物杂志, 2022, (5): 130–134
[2] 王燕, 李廷友, 王豆, 李佳薇, 彭雯璐, 芮海云. 异甜菊醇对盐胁迫下小麦幼苗生长的影响[J]. 作物杂志, 2022, (5): 141–145
[3] 常海刚, 李广, 袁建钰, 谢明君, 祁小平. 不同施肥方式对甘肃陇中黄土丘陵区土壤养分及春小麦产量的影响[J]. 作物杂志, 2022, (5): 160–166
[4] 葛昌斌, 秦素研, 黄杰, 曹燕燕, 廖平安. 耕作方式对小麦赤霉病和产量的影响[J]. 作物杂志, 2022, (5): 235–240
[5] 李宁, 刘彤彤, 杨进文, 史雨刚, 王曙光, 孙黛珍. 不同氮素利用效率型小麦品种的生理差异分析[J]. 作物杂志, 2022, (5): 87–96
[6] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
[7] 于国宜, 孔令聪, 张亮, 韦志, 王永玖, 王智, 杜祥备. 不同新型肥料对小麦光合特性、冠层结构及产量的影响[J]. 作物杂志, 2022, (4): 193–198
[8] 周吉红, 王俊英, 孟范玉, 佟国香, 梅丽, 刘国明, 王燕, 罗军, 解春源. 耕作方式对小麦播种质量、产量和效益的影响[J]. 作物杂志, 2022, (4): 199–204
[9] 梁伟琴, 贾莉, 郭黎明, 李应兰, 胡亚峰, 陈小花, 马旭凤, 李静. 水氮耦合对春小麦干物质累积与植株氮素转运的影响[J]. 作物杂志, 2022, (4): 242–248
[10] 简俊涛, 王清华, 杨辉, 刘骏, 朱传杰, 李玉鹏, 张彬, 张震, 全洪雷, 谢彦周, 王成社. 黄淮南部小麦新品种(系)在过渡生态区南阳盆地利用分析[J]. 作物杂志, 2022, (4): 46–53
[11] 宋全昊, 金艳, 宋佳静, 陈杰, 赵立尚, 白冬, 陈亮, 朱统泉. 35份人工合成六倍体小麦的综合评价[J]. 作物杂志, 2022, (4): 69–76
[12] 潘飞飞, 唐蛟, 孙壮, 陈碧华, 王广印, 吴大付, 王威. 沼液替代化肥对冬小麦产量的影响[J]. 作物杂志, 2022, (3): 174–180
[13] 张子豪, 付鹏浩, 李想成, 吴昊天, 高春保, 张运波, 王齐娥, 肖森, 汤颢军, 邹娟. 江汉平原小麦生产现状及分析——以湖北省天门市为例[J]. 作物杂志, 2022, (3): 39–46
[14] 王健, 许爱玲, 杨娜, 王珂, 席吉龙, 卫晓东, 张建诚, 席天元. 运城盆地不同播期小麦干热风发生风险评价[J]. 作物杂志, 2022, (2): 104–112
[15] 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119–126
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!