作物杂志,2024, 第5期: 29–34 doi: 10.16035/j.issn.1001-7283.2024.05.004

所属专题: 杂粮作物

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

不同胚乳表型对高粱农艺性状及产量的影响

董明宇(), 郑宏峰, 朱哲   

  1. 铁岭市农业科学院,112616,辽宁铁岭
  • 收稿日期:2023-04-27 修回日期:2023-11-09 出版日期:2024-10-15 发布日期:2024-10-16
  • 作者简介:董明宇,主要从事高粱遗传育种研究,E-mail:1148463456@qq.com
  • 基金资助:
    辽宁省重点研发计划(2020JH2/10200014)

Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum

Dong Mingyu(), Zheng Hongfeng, Zhu Zhe   

  1. Tieling Academy of Agricultural Sciences, Tieling 112616, Liaoning, China
  • Received:2023-04-27 Revised:2023-11-09 Online:2024-10-15 Published:2024-10-16

摘要:

为探究高粱籽粒胚乳质地及淀粉类型对高粱产量、株高和其他农艺性状的潜在影响,以一个粉质高粱品系作为母本,一个糯性高粱品系作为父本,于2021年进行人工杂交,2022年对F2胚乳表型重组群体进行随机抽样调查,以鉴定样本胚乳表型,测量和分析样本的产量、株高和其他农艺性状。结果表明,糯性淀粉类型显著降低了植株的单穗重,粉质胚乳质地显著降低了植株的单穗重、千粒重和株高。然而,选择出高产且具有糯性淀粉类型或粉质胚乳质地的品系是可能的,为了有效地识别出具有这种表型的高产品系,需要对其育种工作予以重视。

关键词: 高粱, 胚乳质地, 淀粉类型, 产量, 农艺性状

Abstract:

In order to explore the potential effects of endosperm texture and starch type on grain yield, plant height, and other agronomic traits in sorghum, this study conducted artificial hybridization between a waxy sorghum line as the male parent and a floury sorghum line as the female parent in 2021. In 2022, a sample survey was conducted on the F2 population of recombinant endosperm phenotype to identify sample endosperm phenotypes, measure grain yield, plant height, and other agronomic traits for analysis. The results showed that plants with the waxy starch had significantly reduced panicle weight, while those with floury endosperm texture had significantly reduced panicle weight, 1000-grain weight and plant height. Nonetheless, high-yielding lines with a waxy starch type or floury endosperm texture can be chosen, and breeding efforts for these lines must be prioritized in order to effectively discover high-yielding lines with this phenotype.

Key words: Sorghum, Endosperm texture, Starch type, Yield, Agronomic trait

图1

F2群体中分离出的6种不同胚乳表型 (a) 糯-角质,(b) 糯-中等粉质,(c) 糯-粉质,(d) 粳-角质,(e) 粳-中等粉质,(f) 粳-粉质,下同。

图2

碘染色后的6种不同胚乳表型

表1

不同胚乳表型的样本数量

淀粉类型
Starch type
胚乳质地
Endosperm texture
样本数量(株)
The number of samples (plant)
淀粉类型
Starch type
胚乳质地
Endosperm texture
样本数量(株)
The number of samples (plant)
粳Nonwaxy 角质 11 糯Waxy 角质 8
中等粉质 40 中等粉质 3
粉质 11 粉质 2

表2

不同胚乳表型的方差分析(P值)

变异来源
Source of variation
单穗重
Panicle weight
千粒重
1000-grain weight
株高
Plant height
穗长
Panicle length
茎粗
Stem diameter
穗柄长
Peduncle length
叶面积
Leaf area
淀粉类型Starch type 0.042 0.185 0.568 0.144 0.442 0.661 0.217
胚乳质地Endosperm texture 0.046 0.011 0.007 0.095 0.368 0.072 0.348
淀粉类型×胚乳质地
Starch type×endosperm texture
0.750
0.407
0.809
0.776
0.210
0.221
0.373

图3

不同淀粉类型下3种胚乳质地的单穗重 不同小写和大写字母分别表示不同胚乳质地间在0.05和0.01水平上的显著差异,下同。

图4

不同淀粉类型下3种胚乳质地的千粒重

图5

F2群体中各样本单穗重及千粒重分布情况

表3

不同胚乳表型的其他农艺性状

淀粉类型
Starch type
胚乳质地
Endosperm texture
株高
Plant height (m)
穗长
Panicle length (cm)
茎粗
Stem diameter (cm)
穗柄长
Peduncle length (cm)
叶面积
Leaf area (cm2)
粳Nonwaxy 角质 1.85±0.21bB 23.73±4.31aA 1.72±0.32aA 36.23±3.98bA 554.80±74.39aA
中等粉质 1.76±0.18bAB 21.95±2.86aA 1.70±0.26aA 35.03±5.15abA 551.68±122.36aA
粉质 1.53±0.39aA 21.27±3.29aA 1.76±0.27aA 31.24±6.06aA 549.22±118.76aA
糯Waxy 角质 1.85±0.24bB 22.13±2.53aA 1.62±0.21aA 36.48±4.18aA 516.58±64.95aA
中等粉质 1.64±0.09aA 21.33±1.53aA 1.86±0.23aA 29.83±2.46aA 572.58±95.51aA
粉质 1.51±0.05aA 18.50±3.54aA 1.48±0.04aA 33.80±6.65aA 418.80±55.26aA
[1] 于纪珍, 王瑞, 詹鹏杰, 等. 中国主要高粱杂交种农艺及品质性状多样性分析. 作物杂志, 2017(5):49-54.
[2] 张瑞栋, 高铭悦, 岳忠孝, 等. 灌浆期不同阶段干旱对高粱籽粒淀粉积累的影响. 作物杂志, 2021(4):172-177.
[3] Awika J M, Rooney L W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004, 65(9):1199-1221.
pmid: 15184005
[4] Dykes L. Sorghum phytochemicals and their potential impact on human health. Methods and Protocols, 2019,1931:121-140.
[5] Kulamarva A G, Sosle V R, Raghavan G S V. Nutritional and rheological properties of sorghum. International Journal of Food Properties, 2009, 12(1):55-69.
[6] Hamaker B R, Kirleis A W, Mertz E T, et al. Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 1986, 34(4):647-649.
[7] Duodu K G, Taylor J R N, Belton P S, et al. Factors affecting sorghum protein digestibility. Journal of Cereal Science, 2003, 38(2):117-131.
[8] Hamaker B R, Mohamed A A, Habben J E, et al. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chemistry, 1995, 72(6):583-588.
[9] Shull J M, Watterson J J, Kirleis A W. Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. Journal of Agricultural and Food Chemistry, 1991, 39(1):83-87.
[10] Shull J M, Watterson J J, Kirleis A W. Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm. Protoplasma, 1992, 171(1/2):64-74.
[11] Oria M P, Hamaker B R, Schull J M. In vitro protein digestibility of developing and mature sorghum grain in relation to α-, β-, and γ-kafirin disulfide crosslinking. Journal of Cereal Science, 1995, 22(1):85-93.
[12] Oria M P, Hamaker B R, Axtell J D, et al. A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proceedings of the National Academy of Sciences of the United States, 2000, 97(10):5065-5070.
[13] Duressa D, Weerasoriya D, Bean S R, et al. Genetic basis of protein digestibility in grain sorghum. Crop Science, 2018, 58 (6):2183-2199.
[14] Da Silva L S, Jung R, Zhao Z, et al. Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. Journal of Cereal Science, 2011, 54(1):160-167.
[15] Ioerger B, Bean S R, Tuinstra M R, et al. Characterization of polymeric proteins from vitreous and floury sorghum endosperm. Journal of Agricultural and Food Chemistry, 2007, 55(25):10232-10239.
pmid: 18020308
[16] Selle P H, Cadogan D J, Li X, et al. Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 2010, 156(3/4):57-74.
[17] Singh R, Axtell J D. High lysine mutant gene (hl that improves protein quality and biological value of grain sorghum. Crop Science, 1973, 13(5):535-539.
[18] Taylor J R N, Schussler L, Van Der Walt W H. Fractionation of proteins from low-tannin sorghum grain. Journal of Agricultural and Food Chemistry, 1984, 32(1):149-154.
pmid: 6707328
[19] Virupaksha T K, Sastry L V S. Protein content and amino acid composition of some varieties of grain sorghum. Journal of Agricultural and Food Chemistry, 1968, 16(2):199-203.
[20] Ball S G, Marion H B J, Visser R G F. Progress in understanding the biosynthesis of amylose. Trends in Plant Science, 1998, 3 (12):462-467.
[21] Hizukuri S. Polymodal distribution of the chain lengths of amylopectins and its significance. Carbohydrate Research, 1986, 147(2):342-347.
[22] Seung D. Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytologist, 2020, 228(5):1490-1504.
[23] Jane J L, Chen Y Y, Lee L F, et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal chemistry, 1999, 76(5):629-637.
[24] Palmer G H. Sorghum—food, beverage and brewing potentials. Process Biochemistry, 1992, 27(3):145-153.
[25] Karper R E. Inheritance of waxy endosperm in sorghum. Journal of Heredity, 1933, 24(6):257-262.
[26] Pedersen J F, Bean S R, Graybosch R A, et al. Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase. Euphytica, 2005, 144(1-2):151-156.
[27] Rooney L W, Pflugfelder R L. Factors affecting starch digestibility with special emphasis on sorghum and corn. Journal of Animal Science, 1986, 63(5):1607-1623.
doi: 10.2527/jas1986.6351607x pmid: 3539904
[28] Yan S, Wu X, Bean S R, et al. Evaluation of waxy grain sorghum for ethanol production. Cereal Chemistry, 2011, 88(6):589-595.
[29] Kuhlman L C. Investigation of a xenia effect for yield caused by the waxy gene in grain sorghum. Texas: Texas A & M University 2005.
[30] Zi Y, Ding J F, Song J M, et al. Grain yield,starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Scientific Reports, 2018, 8(1):4548.
[31] 高杰, 李青风, 李晓荣, 等. 贵州省不同年代糯高粱品种(系)农艺性状演变分析. 作物杂志, 2019(4):17-23.
[32] 全国植物新品种测试标准化技术委员会. 植物品种特异性、一致性和稳定性测试指南:GB/T 19557.15-2018. 北京:中国标准出版社,2018.
[33] Sabine G. Estimation of Sorghum Grain Endosperm Texture:ICC Standard 176. ICC, 2011.
[34] Pedersen J F, Bean S R, Funnell D L, et al. Rapid iodine staining techniques for identifying the waxy phenotype in sorghum grain and waxy genotype in sorghum pollen. Crop Science, 2004, 44(3):764-767.
[35] Cesevičienė J, Gorash A, Liatukas Ž, et al. Grain yield performance and quality characteristics of waxy and non-waxy winter wheat cultivars under high and low-input farming systems. Plants, 2022, 11(7):882.
[36] Rooney W L, Aydin S, Kuhlman L C. Assessing the relationship between endosperm type and grain yield potential in sorghum. Field Crops Research, 2005, 91(2/3):199-205.
[37] Hallauer A R. Specialty Corns. Boca Raton: CRC Press, 2000
[38] Milander J J, Mason S C, Kruger G, et al. Waxy maize yield and components as influenced by environment, water regime, and hybrid. Maydica, 2015, 60(3):26.
[39] Graybosch R A, Souza E, Berzonsky W, et al. Functional properties of waxy wheat flours: genotypic and environmental effects. Journal of Cereal Science, 2003, 38(1):69-76.
[1] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[2] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[3] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[4] 黄渝岚, 刘文君, 李艳英, 周佳, 周灵芝, 劳承英, 李素平, 申章佑, 韦本辉. 木薯田间作不同密度南瓜对作物产量、经济效益及土地生产力的影响[J]. 作物杂志, 2024, (5): 125–130
[5] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[6] 穆建国, 王鹏, 柳延涛, 崔佳伟, 陈燕芳, 万素梅, 陈贵红. 不同收获期对食葵商品性及产量的影响[J]. 作物杂志, 2024, (5): 146–151
[7] 李洪亮, 孙玉友, 魏才强, 刘丹, 解忠, 程杜娟, 曲金玲, 宋泽, 孟祥海, 赵云彤, 时新瑞. 控灌施肥对寒地粳稻生长及产量和品质的影响[J]. 作物杂志, 2024, (5): 152–158
[8] 曹少娜, 吴利晓, 关耀兵, 王克雄. 不同生物菌肥种类及用量对青花菜产量和品质的影响[J]. 作物杂志, 2024, (5): 159–166
[9] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[10] 刘子琛, 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英. 增密减氮栽培对杂交籼稻稻米品质的影响[J]. 作物杂志, 2024, (5): 194–203
[11] 周琦, 吴芳, 王振龙, 徐志鹏, 邓超超, 施志国, 张靖, 宿翠翠, 余亚琳, 周彦芳. 氮肥与生物炭互作对设施番茄生长及根结线虫病害的影响[J]. 作物杂志, 2024, (5): 212–219
[12] 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241–246
[13] 何嘉辉, 李艳锋, 严天泽, 张选文, 秦鹏, 郭进有, 王凯, 刘雄伦, 杨远柱. 氮肥减施对超级稻玮两优8612产量及品质的影响[J]. 作物杂志, 2024, (5): 73–79
[14] 王一帆, 林涛, 王冬, 王新翠, 张昊, 刘海军, 陈茂光, 汤秋香. 生物降解地膜和灌溉定额对棉田土壤水热特性的影响[J]. 作物杂志, 2024, (5): 86–95
[15] 张薇, 王琦, 闫鹏, 许艳丽, 严洪冬, 李桂英, 陈迪苏, 焦晓燕, 卢霖, 董志强. 聚糠萘合剂对东北地区高粱不同密度群体叶片衰老及产量的影响[J]. 作物杂志, 2024, (5): 96–104
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!