Crops ›› 2018, Vol. 34 ›› Issue (4): 28-31.doi: 10.16035/j.issn.1001-7283.2018.04.005

Previous Articles     Next Articles

Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province

Li Chengxun1,Li Aiping1,Xu Xiaoyu1,Zheng Kaibin1,2   

  1. 1 Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
    2 Subtropical Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, Fujian, China
  • Received:2018-02-11 Revised:2018-03-14 Online:2018-08-20 Published:2018-08-23

Abstract:

In this paper, the characteristics and application value of pigeonpea were briefly introduced, and the responses mechanism of pigeonpea under drought, low phosphorus, high aluminum ion and high salt stress were reviewed. According to the environmental situation in Fujian Province, the application value of pigeonpea in Fujian area was prospected. It provided a reference basis for popularization of pigeonpea as a potential crop in Fujian area.

Key words: Pigeonpea, Stress resistance, Application prospect

Fig.1

The stress response of pigeonpea"

[1] Ghosh G, Ganguly S, Purohit A , et al. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Reports, 2017,36(7):1037-1051.
doi: 10.1007/s00299-017-2133-0
[2] Saxena R K, Obala J, Sinjushin A , et al. Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theoretical and Applied Genetics, 2017,130(9):1773-1784.
doi: 10.1007/s00122-017-2924-2
[3] Garg N, Singh S . Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth,proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. Journal of Plant Growth Regulation, 2018,37(1):46-63.
doi: 10.1007/s00344-017-9708-4
[4] Ayenan M A T, Ofori K, Ahoton L E , et al. Pigeonpea [Cajanus cajan (L.) Millsp.]production system,farmers′ preferred traits and implications for variety development and introduction in Benin. Agriculture & Food Security, 2017,6(1):48.
[5] Jacob C, Carrasco B, Schwember A R . Advances in breeding and biotechnology of legume crops. Plant Cell, Tissue and Organ Culture (PCTOC), 2016,127(3):561-584.
doi: 10.1007/s11240-016-1106-2
[6] 袁浩, 赖小平, 何伟 , 等. 通络生骨胶囊的研制与开发. 中华中医药杂志, 2004,19(s1):88-90.
doi: 10.3969/j.issn.1673-1727.2004.z1.027
[7] 禹建春, 李美琴, 吴昌枝 , 等. 柳豆叶的鉴别研究. 浙江中医杂志, 2011,46(7):532.
doi: 10.3969/j.issn.0411-8421.2011.07.046
[8] 禹建春, 孙捷, 霍敏 . 重用木豆叶治疗激素性股骨头坏死60例. 中国中医药科技, 2013,20(4):420.
doi: 10.3969/j.issn.1005-7072.2013.04.068
[9] 季兴跃, 薛司徒, 李卓荣 . 木豆叶主要活性成分及其药理作用的研究进展. 中国药学大会暨中国药师周论文集, 2010(1):1-9.
[10] 郑永昌, 赫军, 禹建春 . 木豆叶白及滤纸贴治疗复发性口腔溃疡的疗效观察. 中国中医药科技, 2017,24(5):656-657.
[11] 李爱萍, 陈象新, 俞秀红 , 等. 浅析福建发展木豆产业的可行性与必要性. 农业科技通讯, 2007(8):10-11.
doi: 10.3969/j.issn.1000-6400.2007.08.005
[12] Qiao G, Wen X P, Yu L F , et al. The enhancement of drought tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi. Plant Soil & Environment, 2011,57(12):541-546.
doi: 10.1626/pps.14.22
[13] 许翩翩, 王建柱 . 边坡先锋植物木豆的抗旱性. 安徽农业科学, 2016(20):1-3.
[14] Vanaja M, Maheswari M, Sathish P , et al. Genotypic variability in physiological,biomass and yield response to drought stress in pigeonpea. Physiology and Molecular Biology of Plants, 2015,21(4):541-549.
doi: 10.1007/s12298-015-0324-0
[15] 陈莹, 王普昶, 赵丽丽 , 等. 外源钙对干旱胁迫下木豆种苗生理特性的影响. 草地学报, 2014(5):1051-1055.
doi: 10.11733/j.issn.1007-0435.2014.05.021
[16] 乔光, 文晓鹏, 洪怡 . 木豆抗旱相关基因CcGST1克隆与表达分析. 西南林业大学学报(自然科学), 2017,37(4):1-7.
doi: 10.11929/j.issn.2095-1914.2017.04.001
[17] Rezaei M K, Shobbar Z S, Shahbazi M , et al. Glutathione S-transferase (GST) family in barley:Identification of members,enzyme activity,and gene expression pattern. Journal of Plant Physiology, 2013,170(14):1277-1284.
doi: 10.1016/j.jplph.2013.04.005
[18] 乔光, 文晓鹏, 丁贵杰 . 木豆GDSL脂肪酶基因的克隆及表达分析. 西南农业学报, 2017(8):1720-1725.
doi: 10.16213/j.cnki.scjas.2017.8.005
[19] Tamirisa S, Vudem D R, Khareedu V R . Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought,salt,and cold tolerance in Arabidopsis. Journal of Experimental Botany, 2014,65(17):4769.
doi: 10.1093/jxb/eru224
[20] Sunitha M, Srinath T, Reddy V D , et al. Expression of cold and drought regulatory protein (CcCDR) of pigeonpea imparts enhanced tolerance to major abiotic stresses in transgenic rice plants. Planta, 2017,245(6):1137-1148.
doi: 10.1007/s00425-017-2672-1
[21] 秦丽凤, 玉永雄, 黎晓峰 , 等. 低磷胁迫下木豆利用磷的基因型差异及其机制. 生态环境, 2007(6):1719-1722.
doi: 10.3969/j.issn.1674-5906.2007.06.027
[22] 杨杰, 董登峰, 王永峰 . 木豆种子酸性磷酸酯酶AcPase I的部分纯化和动力学特性. 广西农业科学, 2007(4):386-390.
doi: 10.3969/j.issn.2095-1191.2007.04.009
[23] 施安辉, 王光玉, 李桂杰 , 等. 目前国内外植酸酶研究进展. 中国酿造, 2005(5):5-10.
doi: 10.3969/j.issn.0254-5071.2005.05.002
[24] 董登峰, 江立庚, 杨杰 , 等. 大豆磷酸烯醇式丙酮酸磷酸酯酶( PEPP)研究:I.对非生物胁迫的反应. 广西农业生物科学, 2005(2):113-117.
[25] 邢承华, 张淑娜, 卢建挺 , 等. 铝毒胁迫下水稻根冠黏液中铝形态的变化. 现代农业科技, 2017(16):5-7.
[26] 黎晓峰, 秦丽凤, 李耀燕 , 等. 不同木豆品种耐铝性的基因型差异及其机理研究. 生态环境, 2005(5):690-694.
doi: 10.3969/j.issn.1674-5906.2005.05.016
[27] Daspute A A, Kobayashi Y, Panda S K , et al. Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea. Planta, 2018,247(1):201-214.
doi: 10.1007/s00425-017-2777-6
[28] Pandey R, Garg N . High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza, 2017,27(7):669-682.
doi: 10.1007/s00572-017-0778-8
[29] Garg N, Pandey R . Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza, 2015,25(3):165-180.
doi: 10.1007/s00572-014-0600-9
[30] Estrada B, Aroca R, Barea J M , et al. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013,201-202(1):42-51.
doi: 10.1016/j.plantsci.2012.11.009
[31] Huang F, Yang C, Cao J . Response of germination physiology of Cajanus cajan seeds to frought stress:Comparison between karst water and allogenic water treatments. Journal of Resources & Ecology, 2015,6(4):263-268.
[32] 颜明娟, 吴一群, 张辉 , 等. 福建茶园土壤及茶叶重金属监测及污染评价. 茶叶学报, 2016(2):71-75.
[33] 周国华, 曾道明, 贺灵 , 等. 福建铁观音茶园生态地球化学特征. 中国地质, 2015(6):2008-2018.
[34] 林茂发, 邓华元 . 福建省龙岩市翠屏山煤矿岩溶水致灾因素分析及防治对策. 能源与环境, 2016(2):102-105.
[35] 陈彦美, 陈植华, 於开炳 . 地下水水位及水温在查明矿区岩溶水补给条件中的应用—以福建马坑铁矿为例. 中国岩溶, 2013(1):64-72.
doi: 10.3969/j.issn.1001-4810.2013.01.010
[36] 陈传芳 . 福建安溪潘田岩溶矿区排水疏干的主要影响因素. 福建地质, 2010(1):42-45.
doi: 10.3969/j.issn.1001-3970.2010.01.008
[37] 李剑玲 . 福建连城赖源岩溶景观特点及成因探讨. 福建地质, 2010(1):46-52.
doi: 10.3969/j.issn.1001-3970.2010.01.009
[38] 蔡顺香 . 福建省农业土壤污染现状与治理对策. 福建农业科技, 2017(2):67-70.
doi: 10.13651/j.cnki.fjnykj.2017.02.021
[39] 尚二萍, 张红旗, 杨小唤 , 等. 我国南方四省集中连片水稻田土壤重金属污染评估研究. 环境科学学报, 2017(4):1469-1478.
doi: 10.13671/j.hjkxxb.2016.0407
[40] 姜超, 陈志彪, 陈志强 , 等. 闽西南崩岗土壤重金属含量、分布、来源及生态风险. 中国生态农业学报, 2016(3):373-383.
doi: 10.13930/j.cnki.cjea.151040
[41] 张中开 . 永定县非煤矿山废弃地现状与植被生态修复探析. 现代农业科技, 2015(3):279-281.
[42] 王友生, 侯晓龙, 吴鹏飞 , 等. 长汀稀土矿废弃地土壤重金属污染特征及其评价. 安全与环境学报, 2014(4):259-262.
[43] 韩永刚 . 福建省福州市叶蜡石矿区废弃地土壤肥力状况分析. 亚热带水土保持, 2013(3):6-9.
doi: 10.3969/j.issn.1002-2651.2013.03.002
[1] Zhonghua Liu,Huawei Li,Yongqing Xu,Sixin Qiu,Yongxiang Qiu,Hao Tang. Ornamental and Edible Type Sweet Potato and Its Application Prospect [J]. Crops, 2016, 32(1): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .