Crops ›› 2018, Vol. 34 ›› Issue (4): 20-27.doi: 10.16035/j.issn.1001-7283.2018.04.004

Previous Articles     Next Articles

Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review

Bai Wenlian1,Zheng Yi1,2,Xiao Jingxiu1   

  1. 1 College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2 Education Department of Yunnan, Kunming 650223, Yunnan, China
  • Received:2018-03-08 Revised:2018-05-14 Online:2018-08-20 Published:2018-08-23

Abstract:

Phosphorus(P) is a non-renewable resource, and its highly use efficiency has always been a highlight. The intercropping of legume and cereal could improve crops productivity, which increase the availability of soil P for better crop phosphorus uptake. In recent years, several thorough researches have been conducted to reveal the mechanisms of P use efficiency in intercropping. This paper reviewed the P acquisition and rhizosphere P content in legume and cereal intercropping system. The mechanisms of below ground interaction for P highly use efficiency in intercropping were reported in our review, including root morphology, root architecture, root exudates (proton, low molecular weight organic acid, and phosphatase), mycorrhizal, and rhizosphere microbial assays. The review elaborately reported the mechanism of legume and cereal intercropping increased soil available phosphorus and promoted the phosphorus utilization efficiency, which was helpful to further understand the response of rhizosphere interaction on P status in intercropping system. Moreover, the outlook of further research from qualitative study to community interaction in intercropping was also explained in this paper.

Key words: Legume and cereal intercropping, Highly phosphorus use efficiency, Below-ground interaction, Root, Rhizosphere process

Table 1

The changes of soil available phosphorus content in the intercropping of legume and cereal"

间作类型
Intercropping type
土壤类型Soil type 试验类型Test type 有效磷的变化量
The amount of effective phosphorus change
参考文献
Reference
小麦//蚕豆Wheat//Faba bean 红壤Black soil 田间试验Field experiment 9.0%~82.4% [9]
1.84%~59.66% [10]
玉米//大豆Corn//Soybean 紫色土Purple soil 盆栽试验Pot experiment 5.17%~17.05% [12]
鹰嘴豆//大麦Chickpea//Barley 细壤土Fine loamy soil 大棚试验Greenhouse test 3.2% [15]

Table 2

The effects of legume and cereal intercropping on phosphorus absorption"

间作类型Intercropping type 土壤类型Soil type 试验类型Test type 磷吸收的变化量
Changes in phosphorus absorption
参考文献Reference
玉米//大豆Maize//Soybean 黄壤Yellow soil 盆栽试验Pot experiment 55% [11]
鹰嘴豆//大麦Chickpea//Barley 细壤土Fine loamy soil 大棚试验Greenhouse test 19.2% [15]
玉米//鹰嘴豆Maize//Chickpea 潮褐土Cinnamon soil 根系分隔试验Root separation test 28.1%~118.0% [18]
小麦//蚕豆Maize//Faba bean 粉砂质潮土Silty tidal soil 盆栽试验Pot experiment 90%~130% [19]
玉米//蚕豆Maize//Faba bean 灌漠土Irrigated desert soil 田间试验Field experiment
盆栽试验Pot experiment
田间试验Field experiment
23.9%~55.8%
30%~116%
20.3%~38%
[17]
[20]
[21]
小麦//大豆Wheat/Soybean 灰钙土Calcic soil 田间试验Field experiment 6%~27% [22]

Fig.1

The below-ground biotic mechanism for legume and cereal intercropping improved P uptake and utilization"

[1] Shen J, Yuan L, Zhang J , et al. Phosphorus dynamics:from soil to plant. Plant Physiology, 2011,156(3):997-1005.
doi: 10.1104/pp.111.175232
[2] Raghothama K G, Kartikeyan A S . Phosphate acquisition. Plant & Soil, 2005,274(1-2):37-49.
[3] 李隆 . 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016,24(4):403-415.
[4] 苏本营, 陈圣宾, 李永庚 , 等. 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33(14):4505-4514.
doi: 10.5846/stxb201204200574
[5] Machado S . Does intercropping have a role in modern agriculture? Journal of Soil and Water Conservation, 2009,64(2):55A-57A.
doi: 10.2489/jswc.64.2.55A
[6] Buhk C, Alt M, Steinbauer M J , et al. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe-A call to adapt our conservation measures. Science of the Total Environment, 2016,576 : 225-233.
[7] 杨亚东, 冯晓敏, 胡跃高 , 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响. 应用生态学报, 2017,28(3):957-965.
[8] 冯晓敏, 杨永, 任长忠 , 等. 燕麦/大豆和燕麦/花生间作对根际土壤固氮细菌多样性与群落结构的影响. 中国农业大学学报, 2016,21(1):22-32.
[9] 张德闪, 王宇蕴, 汤利 , 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013,19(1):127-133.
doi: 10.11674/zwyf.2013.0115
[10] 王宇蕴, 任家兵, 郑毅 , 等. 间作小麦根际和土体磷养分的动态变化. 云南农业大学学报, 2011,26(6):851-855.
doi: 10.3969/j.issn.1004-390X(n).2011.06.021
[11] 刘均霞, 陆引罡, 远红伟 , 等. 玉米/大豆间作条件下养分的高效利用机理. 山地农业生物学报, 2007,26(2):105-109.
[12] Wang X, Deng X, Pu T , et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017,204:12-22.
doi: 10.1016/j.fcr.2016.12.020
[13] 代会会, 胡雪峰, 曹明阳 , 等. 豆科间作对番茄产量、土壤养分及酶活性的影响. 土壤学报, 2015,52(4):911-918.
[14] 唐秀梅, 钟瑞春, 蒋菁 , 等. 木薯/花生间作对根际土壤微生态的影响. 基因组学与应用生物学, 2015,34(1):117-124.
[15] Bagci E G . Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. Journal of Plant Nutrition, 2007,30(9):1455-1469.
doi: 10.1080/01904160701555648
[16] Xia H Y, Zhao J H, Sun J H , et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013,150(15):52-62.
doi: 10.1016/j.fcr.2013.05.027
[17] 李隆 . 间作作物种间促进与竞争使用研究. 北京:中国农业大学, 1999.
[18] 李淑敏 . 间作作物吸收磷的种间促进作用机制研究. 北京:中国农业大学, 2004.
doi: 10.7666/d.y658991
[19] Li C, Dong Y, Li H , et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Scientific Reports, 2016,6:18663.
doi: 10.1038/srep18663
[20] Li L, Li S M, Sun J H , et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(27):11192.
doi: 10.1073/pnas.0704591104
[21] Li L, Zhang F, Li X , et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems, 2003,65(1):61-71.
doi: 10.1023/A:1021885032241
[22] 李隆, 李晓林, 张福锁 . 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000,6(2):140-146.
doi: 10.11674/zwyf.2000.0203
[23] Hauggard-Nielsen H, Ambus P, Jensen E S . Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique . Plant & Soil, 2001,236(1):63-74.
[24] 李萍, 刘玉皎 . 高海拔地区蚕豆/马铃薯根系时空分布特征及根系活性研究. 宁夏大学学报(自然科学版), 2013,34(4):338-343.
doi: 10.3969/j.issn.0253-2328.2013.04.012
[25] Li L, Tilman D, Lambers H , et al. Plant diversity and overyielding:insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014,203(1):63.
doi: 10.1111/nph.12778
[26] Li L, Sun J, Zhang F , et al. Root distribution and interactions between intercropped species. Oecologia, 2006,147(2):280-290.
doi: 10.1007/s00442-005-0256-4 pmid: 16211394
[27] 左元梅, 王贺, 李晓林 , 等. 石灰性土壤上玉米/花生间作对花生根系形态变化和生理反应的影响. 作物学报, 1998,24(5):558-563.
[28] 孙海国, 张福锁, 杨军芳 . 不同供磷水平小麦苗期根系特征与其相对产量的关系. 华北农学报, 2001,16(3):98-104.
doi: 10.3321/j.issn:1000-7091.2001.03.019
[29] 张恩和, 黄高宝, 黄鹏 . 不同供磷水平下粮豆间套种植对根系分布和根际效应的影响. 草业学报, 1999(3):35-38.
[30] 陈杨 . 种间相互作用对大豆、蚕豆和小麦根系形态的影响. 北京:中国农业大学, 2005.
doi: 10.7666/d.y773957
[31] Li S M, Li L, Zhang F S , et al. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 2004,94(2):297.
doi: 10.1093/aob/mch140 pmid: 15238349
[32] 李秋祝, 余常兵, 胡汉升 , 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异. 植物营养与肥料学报, 2010,16(4):777-785.
doi: 10.11674/zwyf.2010.0401
[33] Adnane B, Noyce G L, Carlsson G , et al. Species interactions enhance root allocation,microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017,120(C):179-188.
doi: 10.1016/j.apsoil.2017.08.011
[34] Neumann G, Romheld V . Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant & Soil, 1999,211(1):121-130.
doi: 10.1023/A:1004380832118
[35] Li L, Tang C, Rengel Z , et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant & Soil, 2003,248(1-2):297-303.
doi: 10.1023/A:1022389707051
[36] Lefebvre D D, Duff S M G, Fife C A ,et al. Response to phosphate deprivation in Brassica nigra suspension cells enhancement of intracellular,cell surface and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiology, 1990,93(2):504-511.
doi: 10.1104/pp.93.2.504
[37] Inal A, Gunes A, Zhang F , et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology & Biochemistry, 2007,45(5):350-356.
doi: 10.1016/j.plaphy.2007.03.016 pmid: 17467283
[38] 潘相文, 唐才贤, 王光华 , 等. 作物耐低磷适应机制研究进展. 吉林农业大学学报, 2005,27(4):434-441.
doi: 10.3969/j.issn.1000-5684.2005.04.020
[39] Jones D L . Organic acids in the rhizosphere-a critical review. Plant & Soil, 1998,205(1):25-44.
doi: 10.1023/A:1004356007312
[40] Hinsinger P, Betencourt E, Bernard L , et al. P for two,sharing a scarce resource:soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011,156:1078-1086.
doi: 10.1104/pp.111.175331
[41] Zhang D, Zhang C, Tang X , et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016,209(2):823-831.
doi: 10.1111/nph.13613
[42] Ae N, Arihara J, Okada K , et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science, 1990,248(4954):477-480.
doi: 10.1126/science.248.4954.477 pmid: 17815599
[43] 肖靖秀, 郑毅, 汤利 , 等. 小麦-蚕豆间作对根系分泌低分子量有机酸的影响. 应用生态学报, 2014,25(6):1739-1744.
[44] 雍太文, 陈小容, 杨文钰 , 等. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. 作物学报, 2010,36(3):477-485.
doi: 10.3724/SP.J.1006.2010.00477
[45] 李淑敏, 李隆, 张福锁 . 蚕豆/玉米间作接种AM真菌与根瘤菌对其吸磷量的影响. 中国生态农业学报, 2005,13(3):136-139.
[46] Qiao X, Beis K, Li H G , et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant & Soil, 2016,406(1-2):1-13.
[47] 李淑敏, 李隆, 张福锁 . 丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用. 中国农业大学学报, 2004,9(1):11-15.
doi: 10.3321/j.issn:1007-4333.2004.01.003
[48] 董艳, 汤利, 郑毅 , 等. 施氮对间作蚕豆根际微生物区系和枯萎病发生的影响. 生态学报, 2010,30(7):1797-1805.
[49] 王硕, 张仕颖, 史静 , 等. 丛枝菌根真菌与间作对滇池流域红壤上大豆生长及磷累积的影响. 作物杂志, 2015(6):106-111.
doi: 10.16035/j.issn.1001-7283.2015.06.018
[50] 张宇亭, 朱敏, 线岩相洼 , 等. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响. 生态学报, 2012,32(22):7091-7101.
doi: 10.5846/stxb201110251582
[51] Jalonen R, Timonen S, Sierra J , et al. Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agroforestry Systems, 2013,87(2):319-330.
doi: 10.1007/s10457-012-9553-1
[52] Gerretsen F C . The influence of microorganisms on the phosphate intake by the plant. Plant & Soil, 1948,1(1):51-81.
doi: 10.1007/BF02080606
[53] 李淑高 . 解磷微生物的研究Ⅱ.施用Bacillus.74型解磷微生物对土壤和作物的影响. 山西农业大学学报(自然科学版), 1982,2(2):46-51.
[54] Illmer P, Barbato A, Schinner F . Solubilization of hardly-soluble A1PO4 with P-solubilizing microorganisms. Soil Biology & Biochemistry, 1995,27(3) : 265-270.
doi: 10.1016/0038-0717(94)00205-F
[55] 洪坚平, 谢英荷, Neumann ,等. 两种微生物菌剂对小麦幼苗生长和磷吸收机理的影响研究. 中国生态农业学报, 2008,16(1):105-108.
[56] Kucey R M . Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Applied & Environmental Microbiology, 1987,53(12):2699-2703.
[57] Tang X, Placella S A, Dayde F , et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant & Soil, 2016,407(1-2):1-16.
[58] Cheng L, Tang X, Vance C P , et al. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). 2014,65(12):2995-3003.
[59] Wu P, Ma L, Hou X , et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003,132(3):1260-1264.
doi: 10.1104/pp.103.021022
[60] Abel S, Ticconi C A, Delatorre C A . Phosphate sensing in higher plants. Physiologia Plantarum, 2002,115(1):1-8.
doi: 10.1034/j.1399-3054.2002.1150101.x pmid: 12010462
[61] Coulis M, Bernard L, Gerard F , et al. Endogeic earthworms modify soil phosphorus,plant growth and interactions in a legume-cereal intercrop. Plant & Soil, 2014,379(1-2):149-160.
[62] Santiago D C, ArieiraG D O, De Almeidal E , et al. Responses of soil nematode communities to agroecological crop management systems. Nematology, 2012,14(2):209-221.
doi: 10.1163/138855411X587103
[1] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[2] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
[3] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology [J]. Crops, 2018, 34(1): 160-165.
[4] Peina Lu,Jinghui Liu,Baoping Zhao,Lijun Li,Xuefeng Lei,Fengyi Zhang. Effects of Microbial Fertilizer on Soil Characteristics and Root Exudates of Oats in Saline-alkali Land [J]. Crops, 2017, 33(5): 85-92.
[5] Juan Zhong,Zhiqiang Fu,Li Liu,Zhijuan Zhu,Huabin Zheng. Correlation Analysis of Methane Transport Capacity and Root Characteristics in Rice [J]. Crops, 2017, 33(4): 105-112.
[6] Hongxin Wang,Yi Yuan,Sudan Yang,Hongmei Liu. Physiological and Biochemical Characteristics and Root Morphology of Fagopyrum megaspartanium under Hydroponic Culture [J]. Crops, 2017, 33(1): 83-87.
[7] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
[8] Ying Chen,Zhenxiang Zhou,Tianyang Zhou,Zhiwei Xu,Zhiqin Wang,Junfei Gu. Mechanisms of High Efficiency of N Uptake and Usage in Rice and Its Cultivation Practice [J]. Crops, 2016, 32(6): 26-32.
[9] Jiao Wang,Yongqing Zhang. Observation on Growth Pattern of Root System in Different Adzuki Bean Varieties under Drought Stress [J]. Crops, 2016, 32(6): 112-119.
[10] Zhendong Liu,Bo Wang,Bei Xue,Qiangfeng Wang,Lei Hou. High Throughput Analysis of the Endophytic Bacterial Community Structure in Roots and Rhizosphere of Highland Barley of Tibetan Plateau [J]. Crops, 2016, 32(6): 49-52.
[11] Qianxu Zhao,Xianrong Yue,Yunsheng Xia,Naiming Zhang,Fuzhao Nian,Yunqiang Yang,Yulin Ma. Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition [J]. Crops, 2016, 32(5): 94-100.
[12] Yanrui Xu,Zhijun Fang,Xiaoping Lu,Chunhua Mu,Qiuping Fan,Lujiang Hao. Isolation and Identification of Endophytic Bacteria from Roots of Four Inbred Lines in Maize [J]. Crops, 2016, 32(4): 112-117.
[13] . [J]. Crops, 2013, 29(3): 56-62.
[14] . [J]. Crops, 2013, 29(3): 75-79.
[15] . [J]. Crops, 2013, 29(3): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .