Crops ›› 2017, Vol. 33 ›› Issue (6): 120-125.doi: 10.16035/j.issn.1001-7283.2017.06.020

Previous Articles     Next Articles

Study on the Pattern of Maize/Brassica juncea var. integlifolia Intercropping in Alpine Regions

Li Hong1,Li Mengjiao2,Wang Yuchao1,Wang Ruijun1,Zhang Xuli1   

  1. 1High Latitude Crops Institute,Shanxi Academy of Agriculture Sciences,Datong 037000,Shanxi,China
    2College of Natural Resources and Environment,Northwest A & F University,Yangling 712100,Shaanxi,China;
  • Received:2017-08-08 Revised:2017-10-13 Online:2017-12-15 Published:2018-08-26

Abstract:

Maize/Brassica juncea var. integlifolia intercropping is a new type of planting pattern in alpine regions of Shanxi Province. In order to obtain the maximum yields and economic benefits, a cultivation experimental plot test (community test) and field demonstration experiment (large scale planting experiment) of maize and Brassica juncea var. integlifolia intercropping were carried out during 2013-2016. The results showed that the five treatments had different effects on the agronomic traits and yields of maize except for the ear rows and yields of Brassica juncea var. integlifolia. The optimum pattern was T3 treatment which had the densities of 67 500 plants/hm 2 for maize and 60 000 plants/hm 2 for Brassica juncea var. integlifolia, and the rows spacing was 13.5cm/110cm and 30cm/55cm, respectively. In the scale cultivation experiment, compared with other treatments, the net income of T3 was the highest.

Key words: Maize, Brassica juncea var. integlifolia, Intercropping, Yield, Economic benefits

Table 1

Experiment design"

处理
Treatment
种植密度(株/hm2)
Planting density (plant/hm2)
行距(cm)
Row spacing
株距(cm)
Plant spacing
T1 52 500 110 17.3
T2 60 000 110 15.2
T3 67 500 110 13.5
T4 75 000 110 12.1
T5 82 500 110 11.0

Table 2

Effects of different planting densities on yield and agronomic traits of maize and yield of Brassica juncea var. integlifolia"

年份
Year
处理
Treatment
株高
(cm)
Plant
height
穗位高(cm)
Ear
height
茎粗
(cm)
Stem
diameter
穗长
(cm)
Ear
length
穗粗
(cm)
Ear
diameter
秃尖长
(cm)
Barren
tip length
穗行数
No. of
ear rows
行粒数
No. of
row grain
千粒重(g)
1000-grain
weight
出子率(%)
Grain rate
玉米产量
(kg/hm2)
Maize yield
高菜产量
(kg/hm2)
Brassica
junceayield
2013 T1 282.51a 105.10a 2.29a 19.37bc 4.67a 1.47c 15.07a 39.72ab 337.89ab 85.71a 9 566.67bc 79 000.00a
T2 281.77a 104.64a 2.23ab 19.77a 4.66a 2.03b 15.06a 40.26a 336.99ab 85.72a 11 050.00ab 76 433.33a
T3 281.01a 103.69ab 2.19b 19.70a 4.71a 2.11b 15.08a 39.35ab 345.68a 85.51ab 12 150.00a 74 533.33a
T4 279.98a 102.20ab 2.21b 19.63ab 4.69a 2.34a 14.89a 38.81bc 338.72ab 83.93b 10 383.33abc 74 916.67a
T5 274.06b 100.88ab 2.03c 19.18c 4.58b 2.52a 14.45a 37.75c 332.26b 82.32c 9 033.33c 74 000.00a
2014 T1 283.61a 105.39a 2.36a 19.69ab 4.70ab 1.12d 15.18a 41.65a 344.39a 85.71a 9 733.33cd 77 116.67a
T2 282.79a 106.34a 2.34ab 19.55ab 4.75ab 1.59c 15.12a 40.63ab 342.35a 85.75a 11 400.00ab 75 716.67a
T3 281.74ab 104.90a 2.25abc 19.99a 4.78a 2.13b 15.16a 40.09ab 347.30a 85.18ab 12 466.67a 74 833.33a
T4 280.46ab 103.17ab 2.19bc 19.74ab 4.70ab 2.40a 15.05a 39.74b 348.91a 83.60b 10 800.00bc 73 900.00a
T5 275.32b 98.57b 2.15c 19.06b 4.66b 2.46a 14.83a 38.87b 331.65b 83.23b 9 116.67d 74 633.33a

Table 3

Comparisons of difference on yield and agronomic traits of maize"

项目Item 株高(cm)
Plant height
穗位高(cm)
Ear height
茎粗(cm)
Stem
diameter
穗长(cm)
Ear length
穗粗(cm)
Ear
diameter
秃尖长(cm)
Barren tip length
穗行数
No. of
ear rows
行粒数
No. of
row grain
千粒重(g)
1000-grain
weight
出子率(%)
Grain rate
产量
(kg/hm2)
Yield
平均值Average 280.32 103.49 2.22 19.57 4.69 2.02 14.99 39.56 340.61 84.67 10 570.00
标准偏差
Standard deviation
3.88 3.12 0.11 0.38 0.06 0.47 0.47 1.07 7.17 1.47 1 371.67
变异系数
Coefficient of variation
1.38 3.01 4.78 1.94 1.38 23.14 3.13 2.71 2.11 1.73 12.98
位次Rank 10 5 3 8 10 1 4 6 7 9 2.00

Table 4

Correlation analysis between yield and agronomic traits of maize"

项目
Item
密度
Density (X0)
株高
Plant height
(X1)
穗位高
Ear height
(X2)
茎粗
Stem diameter
(X3)
穗长
Ear length
(X4)
穗粗
Ear diameter
(X5)
秃尖长
Barren tip length
(X6)
穗行数
No.of ear rows
(X7)
行粒数
No.of row grain
(X8)
千粒重
1000-grain
weight
(X9)
出子率
Grain rate
(X10)
产量
Yield
(X11)
X0 1
X1 -0.697** 1
X2 -0.639** 0.518** 1
X3 -0.753** 0.643** 0.629** 1
X4 -0.299 0.259 0.358 0.374* 1
X5 -0.316 0.457* 0.494** 0.538** 0.475** 1
X6 0.907** -0.609** -0.514** -0.704** -0.137 -0.242 -1
X7 -0.333 0.380* 0.229 0.318 0.103 0.091 -0.250 1
X8 -0.640** 0.697** 0.492** 0.627** 0.192 0.484** -0.565** 0.346 1
X9 -0.285 0.382* 0.414* 0.287 0.449* 0.524** -0.198 0.312 0.467** 1
X10 -0.768** 0.553** 0.447* 0.681** 0.347 0.343 -0.636** 0.433* 0.578** 0.334 1
X11 -0.187 0.340 0.330 0.144 0.361* 0.565** -0.033 0.123 0.497** 0.620** 0.364* 1

Table 5

Grey correlation coefficient between yield and agronomic traits under different planting densities of maize"

项目 Item 处理
Treatment
株高
Plant
height
穗位高
Ear
height
茎粗
Stem
diameter
穗长
Ear
length
穗粗
Ear
diameter
秃尖长
Barren tip
length
穗行数
No. of
ear rows
行粒数
No. of
row grain
千粒重
1000-grain
weight
出子率
Grain rate
产量
Yield
无量纲化处理 T1 0.8227 0.7401 1.1162 -0.1427 -0.0963 -1.5025 0.6576 0.7769 0.0960 0.7854 -0.7199
Dimensionless result T2 0.5885 0.8433 0.6727 0.3230 0.3482 -0.4323 0.4944 0.9152 -0.1721 0.8017 0.5125
T3 0.3167 0.3392 -0.0111 1.0124 1.1631 0.2140 0.6494 0.2028 1.0688 0.5108 1.3602
T4 -0.0323 -0.3375 -0.2883 0.4379 0.1630 0.7387 -0.1012 -0.3465 0.5821 -0.6753 0.0170
T5 -1.6957 -1.5850 -1.4895 -1.6305 -1.5780 0.9820 -1.7003 -1.5484 -1.5748 -1.4225 -1.1698
绝对差 T1 2.0876 2.0050 2.3811 1.1222 1.1686 0.2376 1.9225 2.0418 1.3609 2.0503 0.5450
Absolute difference T2 1.2210 1.4758 1.3052 0.9555 0.9807 0.2002 1.1269 1.5477 0.4604 1.4342 1.1450
T3 0.3167 0.3392 0.0111 1.0124 1.1631 0.2140 0.6494 0.2028 1.0688 0.5108 1.3602
T4 0.6648 0.9700 0.9208 0.1946 0.4695 0.1062 0.7337 0.9790 0.0504 1.3078 0.6155
T5 2.9606 2.8499 2.7544 2.8954 2.8429 0.2829 2.9652 2.8133 2.8397 2.6874 2.4347
关联系数 T1 0.4184 0.4283 0.3866 0.5734 0.5634 0.8684 0.4387 0.4238 0.5253 0.4228 0.7367
Correlation coefficient T2 0.5525 0.5049 0.5358 0.6127 0.6064 0.8876 0.5724 0.4929 0.7687 0.5121 0.5685
T3 0.8301 0.8199 1.0000 0.5987 0.5646 0.8804 0.7006 0.8863 0.5854 0.7493 0.5254
T4 0.6956 0.6090 0.6215 0.8906 0.7652 0.9401 0.6740 0.6068 0.9744 0.5353 0.7119
T5 0.3362 0.3448 0.3525 0.3412 0.3453 0.8460 0.3358 0.3477 0.3456 0.3582 0.3813

Table 6

Grey relational analysis between yield and agronomic traits under different planting densities of maize"

项目
Item
株高
Plant
height
穗位高
Ear
height
茎粗
Stem
diameter
穗长
Ear
length
穗粗
Ear
diameter
秃尖长
Barren tip
length
穗行数
No. of ear
rows
行粒数
No. of row
grain
千粒重
1000-grain weight
出子率
Grain rate
产量
Yield
关联度
Relational grade
0.5666 0.5414 0.5793 0.6033 0.5690 0.8845 0.5443 0.5515 0.6399 0.5155 0.5848
位次Rank 7 10 5 3 6 1 9 8 2 11 4

Table 7

Principle factor and the comprehensive score of factors"

处理
Treatment
FAC1-1 FAC2-1 综合分值
Comprehensive score
排序
Rank
T1 1.305 -0.635 0.422 3
T2 0.660 0.178 0.430 2
T3 -0.176 1.216 0.433 1
T4 -0.578 0.432 -0.122 4
T5 -1.212 -1.191 -1.163 5

Table 8

The economic benefits of maize/Brassica juncea var. integlifolia intercropping systems under scale cultivation experiment"

年份
Year
处理
Treatment
产量Yield (kg/hm2) 收益(元/hm2)
Earnings
(yuan/hm2)
玉米
Maize
高菜
Brassica juncea
2015 T1 9 189.5 76 383.5 52 895.0
T2 10 600.0 76 305.5 55 112.8
T3 11 829.0 75 019.5 56 436.2
T4 10 845.5 73 869.5 54 287.6
T5 8 547.0 73 835.5 50 593.0
CK1 11 954.0 - 19 126.4
CK2 - 78 932.0 39 466.0
2016 T1 9 313.5 76 940.5 53 371.9
T2 10 645.5 74 833.5 54 449.6
T3 11 697.5 73 634.0 55 533.0
T4 10 584.0 71 782.0 52 825.4
T5 8 774.5 70 887.5 49 483.0
CK1 12 278.5 - 19 645.6
CK2 - 78 528.5 39 264.3
[1] 杨文钰, 雍太文, 任万军 , 等. 发展玉米套种大豆,振兴大豆产业. 大豆科学, 2008,27(1):1-7.
[2] 王竹, 杨文钰, 伍晓燕 , 等. 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响. 应用生态学报, 2008,19(2):329-323.
[3] 骆世明 . 农业生态学.北京: 中国农业出版社, 2009.
[4] 于晓波, 苏本营, 龚万灼 , 等. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响. 中国农业科学, 2014,47(9):1743-1753.
doi: 10.3864/j.issn.0578-1752.2014.09.009
[5] 邓小燕, 王小春, 杨文钰 , 等. 玉米/大豆和玉米/甘薯模式下玉米磷素吸收特征及种间相互作用. 作物学报, 2013,39(10):1891-1898.
doi: 10.3724/SP.J.1006.2013.01891
[6] 杨峰, 娄莹, 廖敦平 , 等. 玉米—大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015,41(4):642-650.
doi: 10.3724/SP.J.1006.2015.00642
[7] 杨守明 . 玉米—大豆间作套种栽培模式分析. 河北农业科学, 2012,16(11):16-17.
doi: 10.3969/j.issn.1088-1631.2012.11.004
[8] 雍太文, 刘小明, 刘文钰 , 等. 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响. 应用生态学报, 2014,25(2):474-482.
[9] 崔亮, 苏本营, 杨峰 , 等. 不同玉米—大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47(8):1489-1501.
doi: 10.3864/j.issn.0578-1752.2014.08.005
[10] 董茜, 雍太文, 刘小明 , 等. 施氮方式对玉米—大豆套作体系中作物产量及玉米籽粒灌浆特性的影响. 作物学报, 2014,40(11):2028-2039.
doi: 10.3724/SP.J.1006.2014.02028
[11] 雍太文, 刘小明, 宋春 , 等. 种植方式对玉米—大豆套作体系中作物产量、养分吸收和种间竞争的影响. 中国生态农业学报, 2015,23(6):659-667.
doi: 10.13930/j.cnki.cjea.141444
[12] 黄承建, 赵思毅, 王季春 , 等. 马铃薯/玉米套作对玉米光合特性和产量的影响. 中国生态农业学报, 2013,21(5):552-560.
[13] 郑顺林, 袁继超, 李德林 , 等. 马铃薯、玉米套作模式下田间配置及群体优化. 中国马铃薯, 2010,24(2):80-83.
[14] 周龙, 吕玉, 朱启林 , 等. 施氮与间作对玉米和马铃薯钾吸收与分配的影响. 植物营养与肥料学报, 2016,22(6):1485-1493.
[15] 蔡叶茂, 王季春, 赵勇 , 等. 不同田间配置对马铃薯与玉米套作产量的影响. 广东农业科学, 2013,40(3):6-8.
doi: 10.3969/j.issn.1004-874X.2013.03.003
[16] 李育才, 李洪, 韩新田 . 山西省高寒区玉米生产特点及主要高产栽培技术.内蒙古农业科技, 2014(3):105-107.
doi: 10.3969/j.issn.1007-0907.2014.03.050
[17] 任锡亮, 王毓洪, 孟秋峰 , 等. 高菜不同播种期及栽培密度试验. 中国瓜菜, 2011,24(5):44-45.
[18] 戚航英, 赵幼平 . “高菜—早稻—晚稻”高产高效种植模式.中国稻米, 2005(4):33-34.
doi: 10.3969/j.issn.1006-8082.2005.04.021
[19] 吴平, 徐桂明, 邹杰华 , 等. 露地三池高菜—民田茄一年两熟栽培模式.西北园艺(蔬菜), 2010(5):24-25.
[20] 朱元刚, 高凤菊 . 不同行株距配置下夏播谷子产量及相关性状的多重分析. 核农学报, 2014,28(12):2290-2299.
doi: 10.11869/j.issn.100-8551.2014.12.2290
[1] Zhao Xin, Chen Shaofeng, Wang Hui, . Research on the Yield and Quality of Different Tartaty#br# Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[2] Chen Guangzhou, Wang Guangfu, Qu Jianzhou, Si Leiyong, . Study on Grain Dehydration Rate and#br# Correlation Analysis of Major Related#br# Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[3] Su Guihua, Li Chunlei, Su Yichen. Evaluation of 22 Main Popularized Varieties#br# by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[4] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[5] Su Feifei, Zhang Jinghua, Li Yong, Liu Shangwu, Liu Zhenyu, Wang Shaopeng, Wan Shuming, Chen Xi, Gao Yunfei, Hu Linshuang, Lü Dianqiu. Effects of Different Irrigation Methods on#br# Physiological Characteristics and Water#br# Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
[6] Zhang Ruidong, Cao Xiong, Yue Zhongxiao, . Effects of Nitrogen and Density Interaction on Grain#br# Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[7] An Xia, Zhang Haijun, Jiang Fangshan, Lü Lianjie, Chen Jun. Effects of Different Sowing Dates and Sowing#br# Densities on the Population Structure and#br# Yield of Two Spike Type Winter Wheats [J]. Crops, 2018, 34(5): 132-136.
[8] Li Shaokun, Zhang Wanxu, Wang Keru, Han Dongsheng, . Study on Maize Mechanical Grain#br# Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[9] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[10] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[11] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[12] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation [J]. Crops, 2018, 34(4): 121-125.
[13] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area [J]. Crops, 2018, 34(4): 126-130.
[14] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[15] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .