Crops ›› 2019, Vol. 35 ›› Issue (4): 42-48.doi: 10.16035/j.issn.1001-7283.2019.04.007

Previous Articles     Next Articles

Evaluation of Basic Agronomic Traits of Secale cereale subsp. segetale

Mu Yunsen,Wen Xiaolei,Yang Yanping,Liu Xinxin,Guo Juan,Cui Jing,Song Nan,Zuo Xueli,Che Yonghe   

  1. College of Agronomy and Biotechnology, Hebei Normal University of Science and Technonlogy, Qinhuangdao 066600, Hebei, China
  • Received:2019-01-19 Revised:2019-06-21 Online:2019-08-15 Published:2019-08-06

Abstract:

In order to further understand the agronomic traits in Secale cereale subsp. segetale populations, and provide a basis for conservction and utilization of germplasm resources, the plant height, spike length, spike width, effective spikes, spikelets per spike, kernels per spikelet and 1000-kernel weight of Secale cereale subsp. segetale populations were investigated. The results showed that the genetic variation of 58 Secale cereale subsp. segetale populations number in all agronomic traits ranged from 5.1% to 42.8%. The plant height of 89R66 was the highest, effective spikes of 89R23 was the highest, spikelets per spike of 89R43 was the highest, kernels per spikelet of 90R6 was the highest, and 1000-kernel weight of 89R34 was the largest. Correlation analysis showed that the spike length and spike width of Secale cereale subsp. segetale populations had direct or indirect effects on 1000-kernel weight. At a genetic distance of 11.0, 58 germplasms was divided to four groups. The group Ⅰ had the highest number per spikelet and large 1000-kernel weight, which could be used as an excellent germplasm for rye and wheat genetic breeding; The group Ⅱ and group Ⅲ with tall plant and more tillers could be used for the breeding of herbage; The group Ⅳ had no significant features. The agronomic traits among the populations are diverse, indicating that the genetic resources among the populations are abundant, and it is convenient to use these rye germplasm resources for different needs.

Key words: Secale cereale subsp. segetale, Agronomic trait, Gene resource

Table 1

The information of Secale cereale subsp. segetale"

名称
Name
引种地
Introduction
area
引种年份
Introduction
year
名称
Name
引种地
Introduction
area
引种年份
Introduction
year
89R1 伊宁 1989 89R43 伊宁 1989
89R2 伊宁 1989 89R45 玛纳斯 1989
89R3 伊宁 1989 89R46 玛纳斯 1989
89R6 伊宁 1989 89R47 玛纳斯 1989
89R10 伊宁 1989 89R48 玛纳斯 1989
89R11 伊宁 1989 89R49 玛纳斯 1989
89R12 伊宁 1989 89R51 玛纳斯 1989
89R14 伊宁 1989 89R52 木垒 1989
89R15 伊宁 1989 89R53 玛纳斯 1989
89R16 伊宁 1989 89R54 玛纳斯 1989
89R19 伊宁 1989 89R57 玛纳斯 1989
89R20 新源 1989 89R58 玛纳斯 1989
89R21 新源 1989 89R59 玛纳斯 1989
89R22 新源 1989 89R64 玛纳斯 1989
89R23 新源 1989 89R65 新疆 1989
89R24 新源 1989 89R66 新疆 1989
89R26 新源 1989 90R2 安宁渠 1990
89R28 新源 1989 90R6 五家渠 1990
89R30 新源 1989 90R13 安宁渠 1990
89R32 新源 1989 90R18 木垒 1990
89R33 伊宁 1989 90R20 奇台 1990
89R34 伊宁 1989 90R23 安宁渠 1990
89R35 伊宁 1989 90R27 霍城 1990
89R36 伊宁 1989 90R28 乌鲁木齐 1989
89R37 伊宁 1989 90R29 巩留 1990
89R39 伊宁 1989 90R32 安宁渠 1990
89R40 伊宁 1989 90R33 伊宁 1990
89R41 伊宁 1989 90R35 新源 1990
89R42 伊宁 1989 90R36 伊宁 1990

Table 2

Basic statistical analysis of agronomic traits of Secale cereale subsp. segetale"

性状
Trait
最大值
Maximum
最小值
Minimum
极差
Range
平均值
Mean
标准差
Standard deviation
变异系数(%)
Coefficient of variation
株高Plant height (cm) 151.6 119.4 32.2 138.8 7.0 5.1
穗长Spike length (cm) 16.2 10.5 5.7 13.2 1.3 10.0
穗宽Spike width (cm) 1.0 0.4 0.6 0.6 0.2 37.8
有效穗数Effective spikes 59.0 7.4 51.6 30.2 12.9 42.8
小穗数Spikelets per spike 46.2 32.3 13.9 40.3 3.1 7.6
穗粒数Kernels per spikelet 79.6 16.4 63.2 43.7 17.4 39.8
千粒重1000-kernel weight (g) 34.8 12.4 22.4 21.9 3.6 16.3

Table 3

Corresponding materials for the highest agronomic traits of Secale cereale subsp. segetale"

性状Trait 最大值Maximum 材料Material
株高Plant height (cm) 151.6 89R66
穗长Spike length (cm) 16.2 89R59
穗宽Spike width (cm) 1.0 89R15、89R19、
89R40、89R64、
90R18、90R35
小穗数Spikelets per spike 46.2 89R43
有效穗数Effective spikes 59.0 89R23
穗粒数Kernels per spikelet 79.6 90R6
千粒重1000-kernel weight (g) 34.8 89R34

Fig.1

Distribution of number of 58 Secale cereale subsp. segetale populations"

Table 4

Correlation analysis of agronomic traits of Secale cereale subsp. segetale"

性状
Trait
株高
Plant height
穗长
Spike length
穗宽
Spike width
有效穗数
Effective spikes
小穗数
Spikelets per spike
穗粒数
Kernels per spikelet
穗长Spike length 0.069
穗宽Spike width 0.050 0.520**
有效穗数Effective spikes 0.187 -0.247** -0.588**
小穗数Spikelets per spike 0.142 0.587** 0.234** -0.192
穗粒数Kernels per spikelet 0.135 0.488** 0.773** -0.446** 0.143
千粒重1000-kernel weight 0.165 0.316** 0.424** -0.250 -0.236 0.465**

Table 5

Regression analysis of 1000-kernel weight of Secale cereale subsp. segetale"

模型Model 非标准化系数Non-standardized coefficient 标准化系数
Standardized coefficient
t 显著性
Significance
B 标准误Standard error
1 常数(Constant) 14.485 4.445 - 3.258 0.002
X1 0.249 0.378 0.093 0.659 0.013
X2 1.956 2.967 0.128 0.659 0.012
X3 0.065 0.039 0.321 1.686 0.047

Table 6

Path analysis of main agronomic traits to 1000-kernel weight in Secale cereale subsp. segetale"

性状
Trait
相关系数
Correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数
Indirect path coefficient
→X1 →X2 →X3
X1 0.316 0.093 0.067 0.043
X2 0.424 0.128 0.005 0.248
X3 0.465 0.321 0.045 0.099

Fig.2

Cluster tree of Secale cereale subsp. segetale"

[1] Leonardo A, Herrera C, Gustavsson L G . A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 2017,154:14.
[2] 曹新有, 陈雪燕, 陈朝辉 , 等. 黑麦属优异基因在小麦改良中的研究与应用. 农业生物技术学报, 2014,22(8):1035-1045.
[3] Naranjo T . Variable patterning of chromatin remodeling,telomere positioning,synapsis,and chiasma formation of individual rye chromosomes in meiosis of wheat-rye additions. Frontiers in Plant Science, 2018,9:880.
[4] Bauer E, Schmutzer T, Barilar I , et al. Towards a whole-genome sequence for rye (Secale cereale L.). The plant Journal, 2017,89(5):853-869.
[5] Li Z, Ren Z L, Tan F Q , et al. Molecular cytogenetic characterization of new wheat-rye 1R (1B) substitution and translocation lines from a Chinese Secale cereal L. aigan with resistance to stripe rust. PLoS ONE, 2016: 11(9):e0163642.
[6] Zhuang L F, Liu P, Liu Z Q , et al. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Molecular Breeding, 2015,35(6):1-11.
[7] Rahmatov M, Rouse M N, Steffenson B J , et al. Sources of stem rust resistance in wheat-alien introgression lines. Plant Disease, 2016,100(6):1101-1109.
[8] Andersson S C, Johansson E, Baum M , et al. New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis. Czech Journal of Genetics and Plant Breeding, 2015,51(4):162-165.
[9] 刘春燕, 闫红飞, 杨文香 , 等. 黑麦重复序列在检测小麦品种中外源染色体的应用. 分子植物育种, 2011,9(1):97-103.
[10] Haseneyer G, Schmutzer T, Seidel M , et al. From RNA-seq to large-scale genotyping genomics resources for rye (Secale cereale L.). BMC Plant Biology, 2011,11:131.
[11] 赵方媛, 李冬梅, 田新会 , 等. 饲草型小黑麦遗传图谱的构建及抗条锈QTL定位. 农业生物技术学报, 2018,26(4):576-584.
[12] Lu H, Rudd J C, Burd J D . Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL. 1RS wheat-rye translocations. Plant Breeding, 2010,129(5):472-476.
[13] Schlegel R, Melz G, Korzun V . Genes,Marker and linkage data of rye (Secale cereale L.):5th uptaded inventory. Euphytica, 1998,101:23-67.
[14] 陆峻君, 戚家华, 杨松杰 , 等. 新疆杂草黑麦的分布、分类地位及来源. 新疆农业学报, 1994,5(1):24-26.
[15] 车永和, 杨欣明, 杨燕萍 , 等. 新疆杂草黑麦居群遗传多样性研究. 麦类作物学报, 2008,28(5):755-758.
[16] 代明 . 新疆杂草黑麦遗传多样性分析. 秦皇岛:河北科技师范学院, 2014.
[17] 车永和, 申雅婷, 杨燕萍 , 等. 一个新疆杂草黑麦居群的细胞学分析. 麦类作物学报, 2016,36(10):1323-1327.
[18] 代明, 李飞, 杨燕萍 , 等. 新疆杂草黑麦染色体核型分析. 麦类作物学报, 2013,33(3):440– 444.
doi: 10.7606/j.issn.1009-1041.2013.03.006
[19] 杨欣明, 董玉琛, 周荣华 , 等. 新疆杂草黑麦抗病性鉴定和细胞学研究. 新疆农业科学, 1994(3):117-120.
[20] 陆峻君, 戚家华, 杨松杰 , 等. 新疆杂草黑麦抗寒性、抗旱性鉴定. 新疆农业学报, 1994(4):147-148.
[21] 董玉琛, 杨欣明, 周荣华 . 黑麦的种类及其研究进展. 新疆农业科学, 1994,5(7):205-208.
[22] 李立会, 李秀全 . 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[23] 马育华 . 田间试验和统计方法. 北京: 中国农业出版社, 1979.
[24] Maraci Ö, Özkan H, Raşit B . Phylogeny and genetic structure in the genus secale. PLoS ONE, 2018,13(7):e0200825.
[25] Han Y, Yin S Y, Huang L , et al. A sodium transporter HvHKT1;1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant and Cell Physiology, 2018,59(10):1976-1989.
[1] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23.
[2] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources [J]. Crops, 2019, 35(3): 29-36.
[3] Tan Qinliang,Zhu Pengjin,Cheng Qin,Li Jiahui,Lü Ping,Pang Xinhua,Zhou Quanguang. Comparison Study on the Yield Components and Quality of Different Sugarcane Varieties (Lines) [J]. Crops, 2019, 35(3): 49-54.
[4] Ying Fu,Yinan Shen,Yanchun Liu,Xiaojiao Chai,Xianrui Wang,Xiaolei Bai,Shutian Li. Correlation Analysis of Amylopectin Content, Nutritional Quality and Agronomic Traits in Spring Millet Varieties [J]. Crops, 2019, 35(2): 90-93.
[5] Xiaoming Wang,Dacheng Li,Zhengda Liao,Yuanchu Gan,Huixiu Chen,Xide Su,Zenglin Wei. Comparation of Agronomic Traits and Yield among Sugarcane Varieties [J]. Crops, 2019, 35(1): 50-55.
[6] Ruiyu Ren,Jihong He,Kongjun Dong,Lei Zhang,Tianpeng Liu,Tianyu Yang. Analysis on Suitable Sowing Date of Four Main Cultivars of Broomcorn Millet in Huining, Gansu [J]. Crops, 2019, 35(1): 152-158.
[7] Wang Lei,Zhang Xiangping,Li Runxi,Niu Xiaoxia,Yang Shimei,Yan Zongshan,Zhang Ziqiang. Multivariate Analysis and Evaluation on Agronomic Traits and Grain Amylopectin Content of Barley [J]. Crops, 2018, 34(5): 71-76.
[8] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[9] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[10] Maolin Yue,Weirong Xue,Ruidong Zhang,Zhongxiao Yue,RuiZhou Lü,Pengyan Guo. Effects of Different Row Spaces on Agronomic Traits and Yield of Millet [J]. Crops, 2018, 34(2): 93-96.
[11] Junshuai Lu,Yunxiang Li,Xingfu Wang,Guohua Gao,Xia Yang,Jing Liang. Effects of High-Density on Agronomic Traits and Yield of Maize Varieties in Yellow River Irrigation Areas of Gansu Province [J]. Crops, 2018, 34(2): 97-102.
[12] Ruixin Zhang,Tianbao Ren,Zhe Zhao,Gang Wen,Mingqin Zhao. Effects of Transplanting Date on Quality and Main Economic Characters of Cigar in Five Fingers Group [J]. Crops, 2018, 34(2): 148-153.
[13] Shuai Zhang,Yuhui Pang,Zhenghong Wang,Liming Wang,Chunyan Chen,Zhankui Zeng,Chunping Wang. Variation of Agronomic Traits and Genetic Diversity in Wheat Germplasms [J]. Crops, 2018, 34(2): 44-51.
[14] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[15] Li Zhao,Qiang Wang,Yongxiang Lin,Yi Zhang. NPK Fertilizer Use Efficiency by Sesame Grown in Yellow Cinnamon Soil in Jianghuai Region [J]. Crops, 2017, 33(6): 154-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[4] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology[J]. Crops, 2018, 34(1): 160 -165 .
[5] . [J]. Crops, 2007, 23(6): 35 -37 .
[6] . [J]. Crops, 2013, 29(5): 3 .
[7] . [J]. Crops, 1998, 14(3): 35 .
[8] . [J]. Crops, 2014, 30(3): 72 -76 .
[9] . [J]. Crops, 1997, 13(2): 21 -22 .
[10] . [J]. Crops, 1990, 6(2): 3 -5 .