Crops ›› 2019, Vol. 35 ›› Issue (5): 52-56.doi: 10.16035/j.issn.1001-7283.2019.05.009

Previous Articles     Next Articles

Effects of Artificial Aging on Genetic Integrity of Elymus sibiricus L.

Huang Fan,Li Jun,Liu Lei,Li Zhiyong,Li Hongyan,Shi Wengui,Xie Yongfeng   

  1. Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Huhhot 010010, Inner Mongolia, China
  • Received:2018-11-01 Revised:2019-06-20 Online:2019-10-15 Published:2019-11-07
  • Contact: Zhiyong Li

Abstract:

The effects of artificial aging on seed vigor and genetic integrity of gliadin in four Elymus sibiricus L. accessions were studied. The results showed that the germination rate, germination potential, germinating index and vigor index of the Elymus sibiricus L. seeds decreased gradually with the aging time prolonging, the germination potential and vigor index of 4 materials were highly significantly different from CK with the decrease of germination rate among them. The genetic integrity of gliadin also changed obviously compared to CK. Two and three types of gliadin spectrum of varieties Elymus sibiricus L. cv. Chuancao No.1 and Elymus sibiricus L. cv. Nongmu were reduced to only 1 type while the types of gliadin spectrum of 2 wild accessions decreased most obviously than CK when the germination rate reduced to about 55%. The genetic diversity index analysis on gliadin spectrum of Elymus sibiricus L. also showed the allele number of 4 materials was significantly different from that of the control when the germination rate was less than 55%. Therefore, it is recommended that 60%~70% as the reference standard of germination rate for renewingElymus sibiricus L. by reproduction and the lowest critical value is 55%.

Key words: Elymus sibiricus L., Genetic integrity, Seed vigor, Gliadin, Artificial aging

Table 1

Testing materials"

编号
Number
种质名称
Germplasm name
种质类型
Germplasm type
选育单位/原产地
Breeding unit/Origin
G1 农牧 育成品种 内蒙古农业大学
G2 川草1号 育成品种 四川省草原科学研究所
G3 05189 野生材料 新疆乌鲁木齐
G4 05191 野生材料 西藏拉萨

Fig.1

Effects of artificial aging on seed vigor of Elymus sibiricus L. Different small letters indicate significant difference (P<0.05)"

Fig.2

Effects of artificial aging on the gliadin spectrum types of Elymus sibiricus L."

Table 2

Effects of artificial aging on the gliadin spectrum types and frequency of Elymus sibiricus L."

编号
Number
发芽率(%)
Germination rate
带型数
Number of gliadin spectrum type
各带型频率Frequency of gliadin spectrum type (%)
G1-CK 95.3 3 85.15 10.21 4.64 - - - -
G1-1 83.2 2 71.37 28.63 - - - - -
G1-2 53.9 1 100.00 - - - - - -
G1-3 23.7 1 100.00 - - - - - -
G2-CK 95.9 2 83.95 16.05 - - - - -
G2-1 81.6 2 73.28 26.72 - - - - -
G2-2 49.6 1 100.00 - - - - - -
G2-3 25.7 1 100.00 - - - - - -
G3-CK 92.3 6 75.44 3.33 12.33 3.46 3.33 2.11 -
G3-1 84.7 5 87.22 4.89 2.25 2.67 2.97 0.00 -
G3-2 44.1 4 82.53 4.44 6.36 6.67 0.00 0.00 -
G3-3 28.6 4 88.95 2.55 1.36 7.14 0.00 0.00 -
G4-CK 98.1 7 78.46 5.26 2.26 2.22 4.95 3.33 3.52
G4-1 84.0 6 79.21 7.89 3.22 3.67 3.08 2.93 0.00
G4-2 50.8 4 83.58 5.44 4.31 6.67 0.00 0.00 0.00
G4-3 29.3 4 89.95 6.57 2.38 1.10 0.00 0.00 0.00

Table 3

Genetic analysis of gliadin spectrum types of Elymus sibiricus L."

编号Number 等位基因数Na 有效等位基因数Ne 多样性指数He 香农指数I
G1-CK 1.4344±0.0095 1.4110±0.0019 0.2147±0.0057 0.2966±0.0020
G1-1 1.3753±0.0389 1.4035±0.0051 0.2104±0.0059 0.2881±0.0066
G1-2 1.3616±0.0401* 1.4022±0.0072 0.2013±0.0064* 0.2846±0.0058
G1-3 1.3603±0.0352* 1.3917±0.0130 0.2001±0.0056* 0.2817±0.0080
G2-CK 1.4385±0.0056 1.4099±0.0047 0.2107±0.0054 0.2971±0.0034
G2-1 1.4299±0.0030 1.4080±0.0061 0.2090±0.0069 0.2909±0.0041
G2-2 1.4164±0.0064* 1.4056±0.0052 0.1945±0.0067* 0.2874±0.0064
G2-3 1.4095±0.0083* 1.3954±0.0118 0.1921±0.0054* 0.2847±0.0081
G3-CK 1.4416±0.0026 1.3438±0.0041 0.1987±0.0044 0.2824±0.0049
G3-1 1.4365±0.0047 1.3423±0.0021 0.1971±0.0049 0.2774±0.0026
G3-2 1.4178±0.0051* 1.3393±0.0017 0.1939±0.0054 0.2745±0.0034
G3-3 1.4117±0.0088* 1.3372±0.0039 0.1930±00.050 0.2693±0.0043
G4-CK 1.6596±0.0079 1.4415±0.0036 0.2397±0.0071 0.3703±0.0052
G4-1 1.6537±0.0078 1.4364±0.0025 0.2366±0.0058 0.3655±0.0062
G4-2 1.6371±0.0089* 1.4300±0.0102 0.2338±0.0061 0.3639±0.0073
G4-3 1.6296±0.0062* 1.4298±0.0109 0.2302±0.0081 0.3610±0.0080
[1] 盖钧镒 . 植物种质群体遗传结构改变的测度. 植物遗传资源学报, 2005,6(1):1-8,14.
[2] 郭本兆 . 中国植物志. 北京: 科学出版社, 1987.
[3] 中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家标准:GB 2930.4-2001,牧草种子检验规程. 北京: 中国标准出版社, 2001.
[4] Draper S R . ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986. Seed Science and Technology, 1987,15(1):431-434.
[5] Stoyanova S D . Genetic shifts and variations of gliadins induced by seed aging. Seed Science and Technology, 1991,19(2):363-371.
[6] 马延飞, 卢新雄, 陈晓玲 , 等. 基于SSR标记的30份玉米种质遗传完整性分析. 植物遗传资源学报, 2007,8(4):387-391.
[7] 陈志德, 王州飞, 刘永惠 , 等. 花生种子人工老化对萌发期种子活力的影响. 江苏农业学报, 2011,27(6):1411-1413.
[8] 刘皋芃, 高翔, 杨明明 , 等. 小麦-簇毛麦易位系中贮藏蛋白的鉴定及分析. 西北农业学报, 2016,25(9):1304-1310.
[9] 杨延兵, 王海莲, 秦岭 , 等. 利用SDS-PAGE鉴定不同地区谷子籽粒醇溶蛋白差异. 华北农学报, 2010,25(6):87-91.
doi: 10.7668/hbnxb.2010.06.016
[10] 吴珊 . 长穗偃麦草醇溶蛋白的遗传多样性分析. 河南农业科学, 2016,45(3):34-38.
[11] 郭超, 刘红, 陈新宏 , 等. 部分美国小麦种质资源醇溶蛋白遗传多样性分析及其亚基对品质性状的影响. 植物遗传资源学报, 2014,15(6):1173-1181.
[12] 姜小苓, 张自阳, 李小军 , 等. 301份小麦种质醇溶蛋白遗传多样性及其与品质性状的相关性分析. 中国粮油学报, 2017,32(11):14-20.
[13] 张自阳, 马景周, 王智煜 , 等. 人工老化对小麦种子活力及醇溶蛋白组成的影响. 种子, 2017,36(8):42-47.
[14] 王芳, 卢新雄, 马晓岗 , 等. 基于醇溶蛋白的20份大麦种质资源遗传完整性分析. 麦类作物学报, 2007,27(4):607-612.
doi: 10.7606/j.issn.1009-1041.2007.04.145
[15] 张自阳, 姜小苓, 王娟娟 , 等. 人工老化处理对小麦种子活力和醇溶蛋白、麦谷蛋白组成的影响. 河南农业科学, 2014,43(2):24-27.
[16] 王欣欣, 卢萍, 李鸿雁 , 等. 种子老化影响老芒麦种子醇溶蛋白遗传完整性的研究. 种子, 2016,35(5):13-17.
[17] 宿宇, 王建光, 卢新雄 . AFLP分析人工老化对扁蓿豆遗传完整性的影响. 草地学报, 2012,20(1):125-129.
[18] 王栋, 张志娥, 陈晓玲 , 等. AFLP标记分析生活力影响大豆中黄18种质遗传完整性. 作物学报, 2010,36(4):555-564.
doi: 10.3724/SP.J.1006.2010.00555
[19] FAO/IPGRI. Genebank Standards. FAO/IPGRI,Rome, 1994: 1-13.
[1] Haosheng Li,Yan Li,Chenglai Wu,Linmao Zhao,Chunqing Zhang. Effects of DA-6 Treatment at Post-Anthesis on Seed Vigor of Maize Inbred Zheng 58 [J]. Crops, 2019, 35(1): 186-191.
[2] Feng Wang,Juncang Qi,Lihao Lin,Xuguang Zheng,Yanan Guo,Lei Gong,Shaoyu Wang,Along Chen,Zhonghao Li,Ruijiao Song. Effects of Artificial Aging on Endogenous Hormones in the Endosperm of Barley Seeds during Early Germination [J]. Crops, 2016, 32(6): 160-167.
[3] Cuicui Yang,Fade Li,Yan Li,Chenglai Wu,Chunqing Zhang. Effects of Arc-Tooth-Shaped Corona Discharge Field Treatment on Improving Corn Seed Vigor and Physiological Indexes [J]. Crops, 2016, 32(6): 154-159.
[4] . [J]. Crops, 2013, 29(3): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .