Crops ›› 2021, Vol. 37 ›› Issue (1): 168-174.doi: 10.16035/j.issn.1001-7283.2021.01.023

Previous Articles     Next Articles

Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design

Liu Yan(), Gong Liang(), Xing Yuehua, Bao Hongjing   

  1. Institute of Plant Nutrition and Environmental Resource, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
  • Received:2020-05-02 Revised:2020-06-22 Online:2021-02-15 Published:2021-02-23
  • Contact: Gong Liang E-mail:liuyan1980@163.com;gongliang1900@sina.com

Abstract:

In order to optimize the combination of organic-inorganic fertilization, an orthogonal design experiment of L9(34) was used to study the effects of different amounts of N, P, K and straw returning on soil physical, chemical properties and maize yield. The results showed that the organic material straw had a significant effect on the improvement of soil physical properties, but the effect of inorganic fertilizer was not significant. The effects were significant of straw and nitrogen application on the contents of soil organic matter and alkaline N, and the rates of P and K had significant effects on the contents of available P and available K, respectively. Through analysis and comparison of different levels of four factors, the technical model with the application of 180kg/ha of nitrogen, 90kg/ha of phosphorus, 120kg/ha of potassium and 6 000kg/ha of straw could reach the best effect of improving soil structure and quality, and increasing yield and efficiency in the main maize area of central Liaoning.

Key words: Orthogonal design, Organic fertilization, Maize, Yield

Table 1

Factors and levels of orthogonal experiment kg/hm2"

水平
Level
因素Factor
N
施氮量
Nitrogen rate
P
施磷量
Phosphorus rate
K
施钾量
Potassium rate
S
秸秆还田量
Straw return rate
1 120 90 90 0
2 180 120 120 6 000
3 240 150 150 12 000

Table 2

Design parameter combination of orthogonal test and results of organic-inorganic fertilizer"

组合
Combination
产量
Yield
(kg/hm2)
百粒重
100-grain weight(g)
土壤化学性质Soil chemical property 土壤物理性质Soil physical property
有机质含量
Organic
matter
(g/kg)
碱解氮
Alkaline nitrogen
(mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
容重
Bulk
density
(g/cm3)
田间持水量
Field
capacity
(%)
毛管孔隙度
Capillary
porosity
(%)
非毛管孔隙度
Non-capillary
porosity
(%)
N1P1K1S1 7 517.7 32.9 27.69 64.6 32.2 127 1.23 27.89 33.20 21.74
N1P2K2S2 8 419.0 35.3 30.71 100.9 23.5 136 1.18 27.52 30.81 26.83
N1P3K3S3 7 947.9 27.4 29.30 103.4 33.5 177 1.17 28.88 32.53 24.93
N2P1K2S3 8 544.4 36.3 28.15 109.3 40.8 162 1.18 29.75 30.09 27.28
N2P2K3S1 8 041.3 32.2 26.64 110.6 33.2 137 1.24 25.03 30.14 24.46
N2P3K1S2 9 358.1 32.3 29.18 110.2 39.8 176 1.19 27.46 30.90 26.60
N3P1K3S2 8 738.3 32.7 31.35 107.6 41.3 167 1.18 25.75 28.07 30.70
N3P2K1S3 9 603.1 31.5 31.30 114.0 30.3 164 1.16 28.01 30.29 28.82
N3P3K2S1 9 291.0 33.9 26.29 100.5 36.5 144 1.20 26.71 33.85 32.07

Table 3

Range analysis of soil physical indexes"

因素Factor N P K S
容重 K1 1.19 1.20 1.19 1.22
Bulk density (g/cm3) K2 1.20 1.19 1.19 1.18
K3 1.18 1.19 1.20 1.17
R 0.02 0.01 0.01 0.05
田间持水量 K1 28.10 27.80 27.80 26.50
Field capacity (%) K2 27.40 26.90 28.00 26.90
K3 26.80 27.70 26.60 28.90
R 1.30 0.90 1.40 2.30
毛管孔隙度 K1 32.20 30.50 31.50 32.40
Capillary porosity (%) K2 30.40 30.40 31.60 29.90
K3 30.70 32.40 30.20 31.00
R 1.80 2.01 1.34 2.47
非毛管孔隙度 K1 24.50 26.60 25.70 26.10
Non-capillary porosity (%) K2 26.10 26.70 28.70 28.00
K3 30.50 27.90 26.70 27.00
R 6.03 1.29 3.01 1.95

Table 4

ANOVA of soil physical indexes"

因素
Factor
误差来源
Source of difference
Ⅲ型平方和
Sum of square(Ⅲ)
自由度
df
均方
Mean square
F
F-value
sig.
容重 N 0.020 2 0.010 3.867 0.040
Bulk density (g/cm3) P 0.004 2 0.002 0.885 0.430
K 0.001 2 0.000 0.150 0.862
S 0.035 2 0.018 6.929 0.006
误差 0.046 18 0.003
田间持水量 N 8.396 2 4.198 2.046 0.158
Field capacity (%) P 19.870 2 9.935 4.842 0.021
K 25.347 2 12.674 2.022 0.161
S 8.298 2 4.149 6.177 0.009
误差 36.933 18 2.052
毛管孔隙度 N 12.123 2 6.061 0.702 0.509
Capillary porosity (%) P 13.109 2 6.555 0.759 0.483
K 31.281 2 15.641 1.811 0.192
S 58.107 2 29.053 3.365 0.049
误差 155.432 18 8.635
非毛管孔隙度 N 65.833 2 32.916 2.252 0.134
Non-capillary porosity (%) P 2.575 2 1.287 0.088 0.916
K 31.349 2 15.675 1.072 0.363
S 211.007 2 105.503 7.218 0.005
误差 263.117 18 14.618

Table 5

Range analysis of soil chemical indexes"

因素Factor N P K S
有机质 K1 29.2 29.1 29.4 26.9
Organic matter (g/kg) K2 28.0 29.6 28.4 30.4
K3 29.7 28.3 29.1 29.6
R 1.7 1.3 1.0 3.5
碱解氮 K1 89.6 93.8 96.3 91.9
Alkaline nitrogen (mg/kg) K2 110.0 108.5 103.6 106.2
K3 107.4 104.7 107.2 108.9
R 20.4 14.7 10.9 17.0
有效磷 K1 29.7 38.1 34.1 34.0
Available phosphorus (mg/kg) K2 37.9 29.0 33.6 34.9
K3 36.0 36.6 36.0 34.9
R 8.2 9.1 2.4 0.9
速效钾 K1 146.7 152.0 155.7 136.0
Available potassium (mg/kg) K2 258.3 145.7 147.3 159.7
K3 258.3 165.7 160.3 167.7
R 11.7 20.0 13.0 31.7

Table 6

ANOVA of soil chemical indexes"

因素
Factor
误差来源
Source of difference
Ⅲ型平方和
Sum of square (Ⅲ)
自由度
df
均方
Mean square
F
F-value
sig.
有机质 N 0.127 2 0.064 2.380 0.121
Organic matter (g/kg) P 0.171 2 0.086 3.209 0.064
K 0.058 2 0.029 1.080 0.360
S 0.572 2 0.286 10.703 0.001
误差 0.481 18 0.027
碱解氮 N 2 338.068 2 1 169.034 11.410 0.001
Alkaline nitrogen (mg/kg) P 974.684 2 487.342 3.757 0.052
K 541.986 2 270.993 2.645 0.098
S 1 508.745 2 754.372 7.363 0.005
误差 1 844.171 18 102.454
有效磷 N 336.968 2 168.484 3.029 0.022
Available phosphorus (mg/kg) P 433.443 2 216.721 5.614 0.021
K 26.851 2 13.426 0.719 0.509
S 5.345 2 2.672 0.143 0.868
误差 335.877 18 18.660
速效钾 N 816.667 2 408.333 2.271 0.132
Available potassium (mg/kg) P 1 880.667 2 940.333 3.884 0.076
K 780.667 2 390.333 5.471 0.014
S 4 880.667 2 2 440.333 6.156 0.009
误差 3 094.000 18 171.889

Table 7

Range analysis of the maize yields and 100-grain weight of different treatments"

因素Factor N P K S
产量 K1 7 961.5 8 266.8 8 826.3 8 283.3
Yield (kg/hm2) K2 8 647.9 8 687.8 8 751.5 8 838.5
K3 9 210.8 8 865.7 8 242.5 8 698.5
R 1 249.3 598.9 583.8 555.1
百粒重 K1 31.9 34.0 32.2 33.0
100-grain weight (g) K2 33.6 33.0 35.2 33.4
K3 32.7 31.2 30.8 31.7
R 1.73 2.77 4.40 1.70

Table 8

ANOVA of the maize yields and 100-grain weight of different treatments"

因素
Factor
误差来源
Source of difference
Ⅲ型平方和
Sum of square(Ⅲ)
自由度
df
均方
Mean square
F
F-value
sig.
产量Yield (kg/hm2) N 23 988.176 2 11 994.088 5.512 0.014
P 12 811.882 2 6 405.941 2.944 0.078
K 13 666.027 2 6 833.013 3.140 0.068
S 4 318.482 2 2 159.241 0.992 0.390
误差 39 164.880 18 2 175.827
百粒重100-grain weight (g) N 3.542 2 1.771 0.277 0.761
P 0.872 2 0.436 0.068 0.934
K 20.016 2 10.008 1.567 0.236
S 34.819 2 17.409 2.726 0.092
误差 114.941 18 6.386

Table 9

Analysis results of comprehensive balance method of each factor level"

因素
Factor
产量
Yield
百粒重
100-grain
weight
容重
Bulk
density
田间持水量
Field
capacity
毛管孔隙度
Capillary
porosity
非毛管孔隙度
Non-capillar
porosity
有机质
Organic
matter
碱解氮
Alkaline
nitrogen
有效磷
Available
phosphorus
有效钾
Available
potassium
K
K-value
N(施氮量)
Nitrogen rate
K3 K2 K2 K1 K1 K3 K3 K2 K2 K2 K2
P(施磷量)
Phosphorus rate
K3 K1 K1 K1 K3 K3 K2 K2 K1 K3 K1K3
K(施钾量)
Potassium rate
K1 K2 K3 K2 K2 K2 K1 K3 K3 K3 K2K3
S(秸秆还田量)
Straw return rate
K2 K2 K1 K3 K1 K2 K2 K3 K2 K3 K2
[1] Peltonen-Sainio P, Jauhiainen L, Laurila I P. Cereal yield trends in northern European conditions:Changes in yield potential and its realization. Field Crops Research, 2009,110(1):85-90.
[2] 耿开友. 有机肥产业化与中国农业可持续发展. 中国农学通报, 2004,20(5):242-245.
[3] 刘晓燕, 金继运, 任天志, 等. 中国有机肥料养分资源潜力和环境风险分析. 应用生态学报, 2010,21(8):2092-2098.
[4] 张奇春, 王光火. 长期不同施肥下杂交水稻与常规稻的产量与土壤养分平衡. 植物营养与肥料学报, 2006,12(3):136, 340-345.
doi: 10.11674/zwyf.2006.0309
[5] 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010,26(11):182-187.
[6] 刘高洁. 长期施肥对麦玉两熟作物光合和保护酶活性的影响. 北京:中国农业科学院, 2010.
[7] Li F S, Yu J M, Nong M L, et al. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agricultural Water Management, 2010,97(2):231-239.
[8] 张晓文, 赵改宾, 杨仁全, 等. 农作物秸秆在循环经济中的综合利用. 农业工程学报, 2006,22(增1):107-109.
[9] 路文涛, 贾志宽, 张鹏, 等. 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响. 农业环境科学学报, 2011,30(3):522-528.
[10] 王虎, 王旭东, 田宵鸿. 秸秆还田对土壤有机碳不同活性组分储量及分配的影响. 应用生态学报, 2014,25(12):3491-3498.
[11] 汪军, 王德建, 张刚. 秸秆还田下氮肥用量对稻田养分淋洗的影响. 中国生态农业学报, 2010,18(2):316-321.
[12] 顾巍巍, 顾树平, 张强, 等. 有机无机配施对水稻产量及产量构成因素的影响. 上海农业学, 2015,31(6):95-100.
[13] 查燕, 武雪萍, 张会民, 等. 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 2015,48(23):4649-4659.
doi: 10.3864/j.issn.0578-1752.2015.23.006
[14] 徐中儒. 回归分析与试验设计. 北京: 中国农业出版社, 1997.
[15] 郑信建. 有机无机肥配施对水稻产量及土壤肥力的影响. 安徽农学通报, 2017,23(17):57-59.
[16] 李荣, 侯贤清, 吴鹏年, 等. 秸秆还田配施氮肥对土壤性状与水分利用效率的影响. 农业机械学报, 2019,50(8):289-298.
[17] 杨滨娟, 黄国勤, 徐宁, 等. 秸秆还田配施不同比例化肥对晚稻产量及土壤养分的影响. 生态学报, 2014,34(13):3779-3787.
doi: <a href='http://dx.doi.org/10.5846/stxb201306071416'>10.5846/stxb201306071416</a>
[18] 张亚丽, 吕家珑, 金继运, 等. 施肥和秸秆还田对土壤肥力质量及春小麦品质的影响. 植物营养与肥料学报, 2012,18(2):307-314.
doi: 10.11674/zwyf.2012.11214
[19] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over china. Nature, 2013,494(7438):459-462.
doi: 10.1038/nature11917 pmid: 23426264
[20] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[21] 刘海龙, 何萍, 金继运, 等. 施氮对高淀粉玉米和普通玉米子粒可溶性糖和淀粉积累的影响. 植物营养与肥料学报, 2009,15(3):493-500.
doi: 10.11674/zwyf.2009.0301
[1] Cao Xiaoyan, Wu Ailian, Wang Jinsong, Dong Erwei, Jiao Xiaoyan. Effects of Nitrogen Fertilization on Yield, Quality and Nitrogen Utilization Efficiency of Sorghum [J]. Crops, 2021, 37(2): 108-115.
[2] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[3] Zhang Xiaojuan, Zhang Shangpei, Cheng Bingwen, Luo Shiwu, Wang Yong, Yang Junxue, Wang Xiaojun. Responses of Broomcorn Prosomillet Growth, Yield and Soil Environment to Different Film-Mulching Planting Patterns in Dryland [J]. Crops, 2021, 37(2): 124-129.
[4] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[5] Li Jie, Zhang Xiaoning, Jin Fansheng, Han Yanlong, Li Haijin. Response of Kidney Bean Growth and Yield to Planting Density in the Dry Year [J]. Crops, 2021, 37(2): 140-146.
[6] Liu Ping, Shao Caihong, Zhang Honglin, Liu Guangrong. Effects of Dry-Wet Alternate Irrigation on Double Cropping Rice Yield and Quality during Late Development Stage under Seasonal Rain Condition [J]. Crops, 2021, 37(2): 153-159.
[7] Li Candong, Guo Tai, Wang Zhixin, Zheng Wei, Zhao Haihong, Zhang Zhenyu, Xu Jiefei, Guo Meiling. Evaluation and Determination of Yield Evaluation Indicators of Soybean Mainly Cultivated Varieties in the Central and Eastern of Heilongjiang Province [J]. Crops, 2021, 37(2): 45-51.
[8] Li Zhongnan, Wang Yueren, Wu Shenghui, Liu Liwei, Qu Haitao, Sun Zhenyu, Li Guangfa. Preliminary Study on Inheritance of Haploid Natural Double Pollen Seeding Ability in Maize [J]. Crops, 2021, 37(2): 57-61.
[9] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[10] Yang Yuchen, Du Zhimin, Zhang Xiaopeng, Li Kunyi, Shen Jiaqi, Xu Hai. Effects of Spraying Methyl Jasmonate on Yield and Grain Quality of Japonica Rice during Heading and Flowering Stage [J]. Crops, 2021, 37(2): 71-76.
[11] Fu Jing, Yin Haiqing, Wang Ya, Yang Wenbo, Zhang Zhen, Bai Tao, Wang Yuetao, Wang Fuhua, Wang Shengxuan. Effects of Nitrogen Topdressing Models on Root Growth and Grain Yield of Japonica Rice in the Region along Yellow River of Henan Province [J]. Crops, 2021, 37(2): 77-86.
[12] Wang Dequan, Sun Yanguo, Du Yuhai, Liu Yang, Wang Yi, Ma Xinghua, Zhang Yuqin, Zhang Riqiang. Effects of Transplanting Date and Mode on Growth, Development, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2021, 37(2): 87-95.
[13] Li Wenxu, Wu Zhengqing, Lei Zhensheng, Jiang Guiying. The Characteristics of Climate Factors Change and Its Effects on Main Grain Crops Yield per Unit Area in Henan Province [J]. Crops, 2021, 37(1): 124-134.
[14] Li Ruijie, Yan Peng, Wang Qingyan, Xu Yanli, Lu Lin, Dong Zhiqiang, Zhang Fenglu. Effects of 5-Aminolevulinic Acid and Ethephon on Photosynthetic Physiology of Leaves and Yield of Spring Maize in Northeast China [J]. Crops, 2021, 37(1): 135-142.
[15] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[2] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[3] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[4] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[5] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[6] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[7] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals[J]. Crops, 2018, 34(1): 16 -24 .
[8] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[9] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .
[10] Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment[J]. Crops, 2018, 34(1): 9 -15 .