Crops ›› 2021, Vol. 37 ›› Issue (1): 82-89.doi: 10.16035/j.issn.1001-7283.2021.01.012

Previous Articles     Next Articles

Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties

Yang Juan1,2(), Jiang Yangming3, Zhou Fang1, Zhang Jun1, Luo Haideng1, Tian Shanjun1()   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
    3State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, Guizhou, China
  • Received:2020-04-15 Revised:2020-12-21 Online:2021-02-15 Published:2021-02-23
  • Contact: Tian Shanjun E-mail:1395975299@qq.com;tsjscau@163.com

Abstract:

In order to explore the response mechanism of maize (Zea mays L.) to water deficit at seedling stage, this study used two maize varieties with significant differences in drought resistance as materials, and used PEG-6000 solution to simulate drought stress of different intensities, and the morphological, physiological and biochemical characteristics of maize seedlings were analyzed. The results showed that, after drought stress, the plant height, leaf area, root length, and root weight of Chengdan 30 with strong drought-resistance showed an increasing trend, while Jinyu 306 with weak drought-resistance showed a downward trend. Drought stress increased the shoot dry weight, root weight, and dry matter weight of Chengdan 30, while the yield of each organism of Jinyu 306 were gradually decreased. Drought stress led to an increase in malondialdehyde content and a decrease in cell membrane stability. Drought stress reduced the chlorophyll a/b ratio and chlorophyll content of maize, and increased carotenoid content. The soluble sugar and soluble protein content of Chengdan 30 did not change significantly after drought stress, but Jinyu 306 did not change significantly until the later period. Proline contents of Chengdan 30 and Jinyu 306 both increased significantly after drought stress. Drought stress increased the activities of superoxide dismutase, peroxidase and catalase in two maize varieties. These results indicate that the drought resistance mechanisms of maize with different drought-resistant are different.

Key words: Maize, Seedling stage, Drought stress, Response mechanism

Table 1

Morphological indicators of two maize varieties under drought stress condition"

处理
Treatment
株高
Plant height (cm)
叶面积(cm2/株)
Leaf area (cm2/plant)
根长(cm/株)
Root length(cm/plant)
根体积(cm3/株)
Root volume (cm3/plant)
48h 144h 48h 144h 48h 144h 48h 144h
C-CK 37.29Bb 38.94Bc 99.43Bb 102.57Bb 32.13Bb 33.22Ab 3.28Bc 5.96Bb
C-T1 43.08Aa 51.32Aa 116.58Aa 133.09Aa 37.12Aa 35.87Aab 5.83Aa 7.08Aa
C-T2 43.25Aa 47.54Ab 107.53ABab 106.86Bb 38.97Aa 36.32Aa 4.28Bb 6.40ABab
J-CK 48.33a 51.08Ab 151.38a 177.83Aa 35.18a 37.23a 9.30Aa 7.30a
J-T1 51.22a 55.32Aa 149.26a 159.95Bb 35.44a 38.96a 5.48Bb 7.62a
J-T2 49.27a 50.71Aab 146.52a 147.56Cc 33.21a 35.36a 6.13Bb 7.97a

Table 2

Biological yields per plant of two maize varieties under drought stress condition"

处理
Treatment
地上部干重Shoot dry weight (g) 根重Root weight (g) 干物重Dry matter weight (g) 根冠比Shoot/Root (%)
48h 144h 48h 144h 48h 144h 48h 144h
C-CK 0.48Bb 0.72Aab 0.22Bc 0.26Cc 0.70Bb 1.06Bb 47.80a 48.64a
C-T1 0.68Aa 0.85Aa 0.31Aa 0.40Aa 1.00Aa 1.26Aa 48.78a 43.84a
C-T2 0.53Bb 0.70Ab 0.27Bb 0.33Bb 0.81Bb 1.02Bb 51.24a 43.45a
J-CK 0.84Aa 0.86a 0.45Aa 0.48a 1.27Aa 1.34Aa 56.37a 53.60a
J-T1 0.73Aab 0.93a 0.35Bb 0.46a 1.08Bb 1.40Aa 55.07a 48.05a
J-T2 0.69Ab 0.83a 0.35Bb 0.47a 1.03Bb 1.13Bb 57.52a 48.26a

Fig.1

Chlorophyll a/b, chlorophyll content and carotenoid content of two maize varieties under drought stress condition Different lowercase letters indicate significant difference (P < 0.05), and different capital letters indicate significant difference (P < 0.01). The same below"

Fig.2

MDA content and cell membrane stability of two maize varieties under drought stress condition"

Table 3

The contents of soluble protein, soluble sugar, and proline of two maize varieties under drought stress condition μg/g"

处理
Treatment
可溶性蛋白Soluble protein 可溶性糖Soluble sugar 脯氨酸Proline
48h 144h 48h 144h 48h 144h
C-CK 1.08a 0.91a 4.40a 5.38Aa 6.73Bc 10.10Cc
C-T1 1.04a 0.94a 4.35a 4.16Ab 38.71Ab 78.69Bb
C-T2 1.12a 0.86a 4.77a 5.63Aa 47.97Aa 104.78Aa
J-CK 1.44Aab 0.80Cc 4.80Aa 7.46Aa 7.57Cc 11.36Cc
J-T1 1.55Aa 0.98Aa 4.25Aab 7.60Aa 21.46Bb 47.13Bb
J-T2 1.05Ab 0.85Bb 3.85Ab 4.48Bb 34.93Aa 62.70Aa

Table 4

SOD, POD and CAT activities of two maize varieties under drought stress condition"

处理
Treatment
CAT [nmol/(min·g)] POD [nmol/(min·g)] SOD (U/g)
48h 144h 48h 144h 48h 144h
C-CK 33.90Cc 30.57Cc 146.67Cc 86.67Cc 9.33Cc 29.00Cc
C-T1 43.63Bb 40.27Bb 222.22Bb 228.89Bb 11.90Bb 36.77Bb
C-T2 54.97Aa 50.65Aa 308.89Aa 362.22Aa 17.02Aa 63.93Aa
J-CK 30.13Bb 30.70a 88.89Bc 120.00Cc 6.89Ab 14.91Cc
J-T1 33.26Bb 32.55a 126.67Bb 208.89Bb 8.08Ab 24.70Bb
J-T2 44.40Aa 29.64a 197.78Aa 351.11Aa 12.67Aa 33.20Aa
[1] 鲁晓民, 曹丽茹, 张前进, 等. 不同基因型玉米自交系苗期干旱—复水的生理响应机制. 玉米科学, 2018,26(2):71-80.
[2] 郭效龙, 宋希云, 裴玉贺, 等. 玉米自交系萌发期和苗期抗旱性指标的筛选. 植物生理学报, 2018,54(11):98-105.
[3] Bian S, Jiang Y. Reactive oxygen species,antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Scientia Horticulturae, 2009,120(2):264-270.
[4] Foye C H, Noctor G. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environment, 2005,28(8):1056-1071.
[5] 张凤启, 赵霞, 丁勇, 等. 玉米耐性旱研究进展. 中国农学通报, 2015,31(30):39-42.
[6] Efeoglu B, Ekmekei, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 2009,75(1):34-42.
doi: 10.1016/j.sajb.2008.06.005
[7] 王晓琴, 袁继超, 熊庆娥. 玉米抗旱性研究的现状及展望. 玉米科学, 2002,10(1):57-60.
[8] 刘畅, 李雪妹, 谭佳缘, 等. 聚乙二醇(PEG)模拟水分胁迫对水稻幼苗矿质离子含量的影响. 作物杂志, 2017(5):162-167.
[9] 孙彩霞, 沈秀瑛, 刘志刚. 作物抗旱性生理生化机制的研究现状和进展. 杂粮作物, 2002,22(5):285-288.
[10] 杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013,39(3):530-536.
doi: 10.3724/SP.J.1006.2013.00530
[11] 李永生, 方永丰, 李玥, 等. 外源硫化氢对PEG模拟干旱胁迫下玉米种子萌发及幼苗生长的影响. 核农学报, 2016,30(4):813-821.
[12] 覃永媛, 温国泉, 顾明华, 等. 干旱胁迫对4份玉米自交系生理与光合特性的影响. 西南农业学报, 2016,29(6):1264-1269.
[13] 刘承, 李佐同, 杨克军, 等. 水分胁迫及复水对不同耐旱性玉米生理特性的影响. 植物生理学报, 2015,51(5):702-708.
[14] 张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 2011,31(5):1303-1311.
[15] 姜志磊, 蒋超, 金峰学, 等. 玉米GA2ox类基因的发掘及其在苗期干旱胁迫后的表达分析. 玉米科学, 2019,27(4):58-63,70.
[16] 张向歌, 王彬, 袁亮, 等. 基于单片段代换系玉米子粒性状的QTL定位. 玉米科学, 2013(6):35-40.
[17] 岳桂东. 玉米干旱胁迫相关基因的克隆与分析. 济南:山东大学, 2008.
[18] 降云峰, 马宏斌, 刘永忠, 等. 玉米抗旱性鉴定指标研究现状与进展. 山西农业科学, 2012,40(7):800-803.
[19] 王娟, 李德全, 谷令坤. 不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应. 西北植物学报, 2002,22(22):285-290.
[20] 田山君, 杨世民, 孔凡磊, 等. 西南地区玉米苗期抗旱品种筛选. 草业学报, 2014,23(1):50-57.
doi: 10.11686/cyxb20140107
[21] 韩金龙, 王同燕, 徐子利, 等. 玉米抗旱机理及抗旱性鉴定指标研巧进展. 中国农学通报, 2010,26(21):142-146.
[22] 王国娟. 玉米抗旱品种的筛选及其抗旱机理的研究. 雅安:四川农业大学, 2011.
[23] 何文铸, 刘永红, 杨勤. 突破性玉米品种成单30高产创建栽培技术. 四川农业科技, 2008(9):24.
[24] 程国平, 任洪, 安兴智, 等. 玉米新品种金玉306特征特性及配套高产栽培技术. 作物杂志, 2008(2):101.
[25] 罗英舰, 宋碧, 杨锦越, 等. 贵州春玉米耐密植宜机收品种初步筛选. 种子, 2019,38(3):24-29.
[26] 周芳, 曹国藩, 杨娟, 等. 20个玉米品种发芽期抗旱性鉴定与评价. 种子, 2020,39(12):73-79.
[27] Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 1973,51(5):914-916.
doi: 10.1104/pp.51.5.914 pmid: 16658439
[28] 梁国玲, 周青平, 颜红波. 聚乙二醇对羊茅属4种植物种子萌发特性的影响研究. 草业科学, 2007,24(6):50-54.
[29] 张雪婷, 杨文雄, 柳娜, 等. 甘肃西部抗旱型玉米品种的综合评价及筛选. 核农学报, 2019,33(3):592-599.
[30] 杜彩艳, 段宗颜, 潘艳华, 等. 干旱胁迫对玉米苗期植株生保护酶活性的影响. 干旱地区农业研究, 2015,33(3):124-129.
[31] 高盼, 徐莹莹, 杨慧莹, 等. 水分胁迫对半干旱地区玉米生长发育及产量的影响. 黑龙江农业科学, 2017(8):17-20.
[32] 孙成凡, 张志亮, 郑彩霞, 等. 间作模式下玉米干旱胁迫响应研究. 灌溉排水学报, 2019,38(增1):32-35.
[33] Kazan K, Lyons R. The link between flowering time and stress tolerance. Journal of Experimental Botany, 2016,67(1):47-60.
pmid: 26428061
[34] 胡明新, 周广胜. 拔节期干旱和复水对春玉米物候的影响及其生理生态机制. 生态学报, 2020,40(1):1-10.
[35] 徐立明, 张振葆, 梁晓玲, 等. 植物抗旱基因工程研究进展. 草业学报, 2014,23(6):293-303.
doi: 10.11686/cyxb20140635
[36] 高杰, 张仁和, 王文斌, 等. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响. 应用生态学报, 2015,26(5):1391-1396.
[37] 于文颖, 纪瑞鹏, 冯锐, 等. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015,35(9):2902-2909.
doi: 10.5846/stxb201306101632
[38] 赵小强, 陆晏天, 白明兴, 等. 不同株型玉米基因型对干旱胁迫的响应分析. 草业学报, 2020,29(2):149-162.
[39] 朱长甫, 陈星, 王英典. 植物类胡萝卜素生物合成及其相关基因在基因工程中的应用. 植物生理与分子生物学学报, 2004,30(6):609-618.
[40] 韩雅珊. 类胡萝卜素的功能研究进展. 中国农业大学学报, 1999,4(1):5-9.
[41] Smékalová V, Doskočilová A, Komis G, et al. Crosstalk between secondary messengers,hormones and MAPK modules during abiotic stress signalling in plants. Biotechnology Advances, 2013,32:2-11.
doi: 10.1016/j.biotechadv.2013.07.009 pmid: 23911976
[42] 张淑勇, 国静, 刘炜, 等. 玉米苗期叶片主要生理生化指标对土壤水分的响应. 玉米科学, 2011,19(5):76-80,85.
[43] 郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应. 植物生理学报, 2018,54(12):1839-1846.
[1] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[2] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[3] Li Zhongnan, Wang Yueren, Wu Shenghui, Liu Liwei, Qu Haitao, Sun Zhenyu, Li Guangfa. Preliminary Study on Inheritance of Haploid Natural Double Pollen Seeding Ability in Maize [J]. Crops, 2021, 37(2): 57-61.
[4] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[5] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[6] Li Ruijie, Yan Peng, Wang Qingyan, Xu Yanli, Lu Lin, Dong Zhiqiang, Zhang Fenglu. Effects of 5-Aminolevulinic Acid and Ethephon on Photosynthetic Physiology of Leaves and Yield of Spring Maize in Northeast China [J]. Crops, 2021, 37(1): 135-142.
[7] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[8] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[9] Qi Jianshuang, Xia Laikun, Huang Bao, Li Chunying, Ma Zhiyan, Ding Yong, Gu Limin, Zhang Jun, Zhang Fengqi, Mu Xinyuan, Tang Baojun, Zhao Faxin, Zhang Lanxun. Discussion on the Application in the Regional Experiment of Maize Varieties by Entropy DTOPSIS Mode and Grey Situation Decision Methods [J]. Crops, 2021, 37(1): 60-67.
[10] Gong Songling, Cao Pei, Gao Zhenzhen, Li Chengwei, Liu Zhangyong, Zhu Bo. Effects of Cropping Patterns on Crop Yield and Resource Utilization Efficiency in Southern China [J]. Crops, 2021, 37(1): 68-73.
[11] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[12] Dong Huaiyu, Dong Zhi, Liu Kejie, Wang Lijuan, Liu Peibin, Hou Zhiyan. Effects of Different Maize Straw Returning Modeson Occurrence of Main Diseases of Maize [J]. Crops, 2020, 36(6): 104-108.
[13] Lin Miao, Zhang Qiuzhi, Shi Liyu, Liu Bei, Wang Hongwu, Pan Jinbao. Genome-Wide Association Study of Digestibility of Straw in Maize [J]. Crops, 2020, 36(6): 23-29.
[14] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[15] Ren Yun, Liu Jing, Li Zhexin, Li Qiang. Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress [J]. Crops, 2020, 36(6): 69-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[7] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[8] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[9] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .
[10] Yaoyan Li,Yanyan Pei,Shanyan Huang,Yingyan Zhang,Songji Wei,Yangjiao Xie,Qiong Zhou. Pharmacognosy of Zhongliuteng (Pileostegia tomentella Hand. Mazz) of Yao Medicine[J]. Crops, 2018, 34(1): 61 -65 .