Crops ›› 2021, Vol. 37 ›› Issue (4): 112-117.doi: 10.16035/j.issn.1001-7283.2021.04.017

Previous Articles     Next Articles

Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region

Liu Tianhao1(), Zhang Yifei1,2(), Wang Huaipeng1, Yang Kejun1,3(), Zhang Jinsong1, Sun Yishan1, Xiao Shanshan1, Xu Rongqiong1, Du Jiarui1, Li Jiayu1, Peng Cheng4, Wang Baosheng5   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
    3Provincial Cultivating Collaborative Innovation Center for the Beidahuang Modern Agricultural Industry Technology, Daqing 163319, Heilongjiang, China
    4Qixingpao Farm in Heilongjiang Province, Heihe 161435, Heilongjiang, China
    5Heshan Farm in Heilongjiang Province, Heihe 161443, Heilongjiang, China
  • Received:2020-11-27 Revised:2021-01-20 Online:2021-08-15 Published:2021-08-13
  • Contact: Zhang Yifei,Yang Kejun E-mail:liutianhao66666@163.com;byndzyf@163.com;byndykj@163.com

Abstract:

Due to the simple fertilization method and unbalanced nutrient management for maize production in the western Songnen Plain of China, the improvements of maize grain yield, quality, and production efficiency are restricted. To solve these problems, maize variety ‘Xianyu 335’ was used as material and five levels of silicon fertilizer, 0 (LCK), 4 (LS1), 8 (LS2), 12 (LS3), and 16g/L (LS4), were set up under field conditions to study the effects of foliar spraying silicon fertilizer with different concentrations on the dry matter accumulation and translocation, and grain yield and quality of maize. The results showed that foliar spraying of silicon fertilizer had a promoting effect on the accumulation of plant dry matter. LS3 significantly increased the dry matter translocation of dry matter accumulation prior to anthesis by 267.00kg/ha and had the highest yield in two years (11 485.68 and 12 331.69kg/ha). In addition, with the increase of silicon fertilizer concentration, the contents of crude starch, crude protein, fructose sugar, nitrogen, and potassium of maize grain increased significantly. Compared with LCK, the increase ratios of four silicon fertilizer treatments were 1.88%-2.56%, 5.64%-8.22%, 20.00%-41.18%, 6.56%-8.56%, and 11.57%-38.84%, respectively. Generally, 8 and 12g/L foliar silicon fertilizer could achieve the synergistic improvement of maize grain yield and quality, and could be used as the levels of foliar silicon fertilizer in the semi-arid area of the western Songnen Plain.

Key words: Maize, Foliar spraying silicon fertilizer, Dry matter accumulation, Yield and quality

Table 1

Effects of foliar application of different concentrations of silicon fertilizer on dry matter accumulation and translocation of maize"

处理
Treatment
DMA (g) TDMP
(kg/hm2)
TEDMP
(%)
TPAK
(kg/hm2)
CPAK
(%)
HI
V12 VT R2 R6
LCK 72.13a 163.47b 305.91b 345.14b 1122.50b 9.15a 10 759.00a 90.55a 0.46a
LS1 72.51a 171.96ab 310.79b 348.32b 1171.75b 9.09a 10 739.00a 90.15a 0.46a
LS2 73.86a 178.89a 326.72ab 365.81ab 1253.50b 9.37a 10 864.25a 89.67ab 0.44a
LS3 73.09a 183.56a 340.01a 376.48a 1389.50a 10.10a 11 118.00a 88.88b 0.45a
LS4 72.70a 177.63a 325.58ab 366.42ab 1140.75b 8.62a 10 952.25a 90.57a 0.44a

Table 2

Effects of different concentrations of silicon fertilizer on maize yield and yield composition factors"

年份
Year
处理
Treatment
有效穗数(穗/hm2
Effective ear number
(ears/hm2)
百粒重
100-grain
weight (g)
行粒数
Kernel number
per row
穗行数
Row number
per ear
穗粒数
Kernel number
per spike
产量
Yield
(kg/hm2)
2017 LCK 66 923.07a 27.76c 35.13b 16.10a 565.68a 9 192.21c
LS1 66 667.67a 28.73bc 35.30b 15.67a 552.99a 9 536.30c
LS2 67 692.31a 29.51ab 37.60a 15.60a 586.56a 10 868.97b
LS3 67 820.50a 30.47a 36.85ab 15.53a 572.40a 11 485.68a
LS4 68 076.92a 28.49bc 36.30ab 15.70a 569.65a 10 658.79b
2018 LCK 65 134.62a 29.65b 30.17a 16.33a 492.47a 9 681.84b
LS1 65 334.61a 29.70b 30.47a 15.73a 478.87a 10 819.07ab
LS2 65 516.92a 31.73ab 31.93a 15.50a 495.49a 11 393.68a
LS3 66 030.00a 33.30a 33.00a 15.40a 508.40a 12 331.69a
LS4 67 173.84a 30.93ab 32.07a 15.67a 502.37a 11 206.64ab
显著性 (F值) Significance (F-value)
年份Year (Y) 3.024 62.850** 102.468** 0.000 17.810** 10.460**
施硅浓度Si concentration (SC) 0.435 11.547** 4.129* 0.397 0.267 13.695**
年份×施硅浓度 (Y×SC) 0.057 8.409** 0.455 0.025 0.068 0.434

Fig.1

Effects of different concentrations of silicon fertilizer on grain quality of maize Different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig. 2

Effects of different silicon application levels on sugar content in grains"

Table 3

Contents of nutrient elements in maize grain by foliar spraying with different concentrations of silicon fertilizer"

处理
Treatment

Nitrogen (g/kg)

Phosphorus (g/kg)

Potassium (g/kg)

Calcium (mg/kg)

Magnesium (mg/kg)

Zinc (mg/kg)
LCK 12.96c 4.77a 2.42d 78.76a 90.36a 13.62a
LS1 13.86ab 4.74a 2.70cd 78.76a 90.55a 13.62a
LS2 13.81b 4.77a 2.98bc 78.44a 91.04a 14.68a
LS3 14.07a 5.08a 3.17ab 79.08a 88.89a 14.17a
LS4 14.01ab 4.65a 3.36a 80.87a 86.96a 13.34a
[1] 尹彩侠, 李前, 孔丽丽, 等. 控释氮肥减施对春玉米产量,氮素吸收及转运的影响. 中国农业科学, 2018,51(20):3941-3950.
[2] Goto M, Ehara H, Karita S, et al. Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science, 2003,164(3):349-356.
[3] 张鹏飞, 张翼飞, 王玉凤, 等. 膜下滴灌氮肥分期追施量对玉米氮效率及土壤氮素平衡的影响. 植物营养与肥料学报, 2018,24(4):915-926.
[4] 尹雪巍, 张翼飞, 杨克军, 等. 不同施钙水平对松嫩平原西部玉米干物质积累,产量及品质的影响. 玉米科学, 2020,28(3):159-166.
[5] Coskun D, Britto D T, Huynh W Q, et al. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 2016,7:1072.
[6] 侯彦林, 郭伟, 朱永官. 非生物胁迫下硅素营养对植物的作用及其机理. 土壤通报, 2005,36(3):426-429.
[7] 丁燕芳, 梁永超, 朱佳, 等. 硅对干旱胁迫下小麦幼苗生长及光合参数的影响. 植物营养与肥料学报, 2007,13(3):471-478.
[8] 张嘉莉, 朱从桦, 豆攀, 等. 硅、磷配施对玉米苗期生长及氮磷钾积累的影响. 中国生态农业学报, 2017,25(5):677-688.
[9] Ma J F, Yamaji N. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 2008,65(19):3049-3057.
[10] 邓接楼, 王艾平, 何长水, 等. 硅肥对水稻生长发育及产量品质的影响. 广东农业科学, 2011,38(12):58-61.
[11] 高臣, 刘俊渤, 常海波, 等. 硅对水稻叶片光合特性和超微结构的影响. 吉林农业大学学报, 2011,33(1):1-4.
[12] 朱从桦, 张嘉莉, 王兴龙, 等. 硅磷配施对低磷土壤春玉米干物质积累、分配及产量的影响. 中国生态农业学报, 2016,24(6):725-735.
[13] Stamatakis A, Papadantonakis N, Savvas D, et al. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Horticulturae, 2003,609:141-147.
[14] 徐宁, 张方园, 曹娜, 等. 硅叶面肥对夏玉米生长发育、产量和品质的影响. 江苏农业科学, 2019,47(14):74-77.
[15] 谢祝捷, 姜东, 曹卫星, 等. 花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响. 作物学报, 2004,30(10):1047-1052.
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003.
[17] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[18] 李向岭, 赵明, 李从锋, 等. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010,36(12):2143-2153.
[19] 郝立冬, 贾森, 刘绍武, 等. 施用硅肥对田间春小麦花后源库关系的影响. 干旱地区农业研究, 2014,32(6):119-124.
[20] Kaya C, Tuna L, Higgs D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 2006,29(8):1469-1480.
[21] 朱从桦, 张嘉莉, 郭翔, 等. 硅磷肥配施提高四川春玉米的氮磷钾吸收和产量. 植物营养与肥料学报, 2016,22(6):1603-1611.
[22] 于立河. 不同肥密及硅肥对黑龙江春小麦产量与品质形成的调控效应. 呼和浩特:内蒙古农业大学, 2012.
[23] 高芳. 基施硅肥对厚皮甜瓜光合生理特性和果实品质的影响. 南宁:广西大学, 2018.
[24] 郑璞帆, 崔志燕, 陈富彩, 等. 喷施硅肥对烤烟圆顶期光合特性、氮钾含量及产质量的影响. 中国土壤与肥料, 2017(4):124-128.
[25] 陆福勇, 江立庚, 秦华东, 等. 不同氮、硅用量对水稻产量和品质的影响. 植物营养与肥料学报, 2005,11(6):846-850.
[26] 邵长泉. 硅肥对糯玉米根系生长状况、产量及品质的影响. 长江蔬菜, 2007(5):50-51.
[27] 江立庚, 曹卫星, 甘秀芹, 等. 水稻氮素吸收、利用与硅素营养的关系. 中国农业科学, 2004,37(5):648-655.
[28] 陈江, 刘汉梅, 黄玉碧. 玉米淀粉合成焦磷酸化酶研究进展. 中国粮油学报, 2012,27(4):114-122.
[29] 龚金龙, 张洪程, 龙厚元, 等. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012,48(1):1-10.
[1] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
[2] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[3] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[4] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[5] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[6] Chen Chengli, Wang Jing, Fu Quanshan, Hou Zhenwu, Jiang Weifeng, Li Liping, Guo Shuyang, Rao Chaoqi, Fu Yunpeng. Effects of Transplanting Dates and Mulching Methods on Dry Matter Accumulation and Economic Characteristics of Dark Sun-Cured Tobacco in Jiaohe [J]. Crops, 2021, 37(3): 126-132.
[7] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[8] Wu Qihua, Chen Diwen, Zhou Wenling, Ao Junhua, Huang Ying, Huang Zhenrui, Li Shuang, Sun Donglei. Effects of Reducing Phosphorus Application in High-P Soils on the P Efficiency of Chewing Cane and Soil Enzyme Activity [J]. Crops, 2021, 37(3): 91-98.
[9] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[10] Li Zhongnan, Wang Yueren, Wu Shenghui, Liu Liwei, Qu Haitao, Sun Zhenyu, Li Guangfa. Preliminary Study on Inheritance of Haploid Natural Double Pollen Seeding Ability in Maize [J]. Crops, 2021, 37(2): 57-61.
[11] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[12] Li Ruijie, Yan Peng, Wang Qingyan, Xu Yanli, Lu Lin, Dong Zhiqiang, Zhang Fenglu. Effects of 5-Aminolevulinic Acid and Ethephon on Photosynthetic Physiology of Leaves and Yield of Spring Maize in Northeast China [J]. Crops, 2021, 37(1): 135-142.
[13] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[14] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[15] Qi Jianshuang, Xia Laikun, Huang Bao, Li Chunying, Ma Zhiyan, Ding Yong, Gu Limin, Zhang Jun, Zhang Fengqi, Mu Xinyuan, Tang Baojun, Zhao Faxin, Zhang Lanxun. Discussion on the Application in the Regional Experiment of Maize Varieties by Entropy DTOPSIS Mode and Grey Situation Decision Methods [J]. Crops, 2021, 37(1): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!