Crops ›› 2021, Vol. 37 ›› Issue (6): 217-223.doi: 10.16035/j.issn.1001-7283.2021.06.035

Previous Articles     Next Articles

Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress

Li An1(), Shu Jianhong2, Liu Xiaoxia2, Meng Zhengbing2, Wang Xiaoli2(), Zhao Degang1()   

  1. 1College of Life Sciences (Institute of Agro-Bioengineering), Guizhou University/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)/Collaborative InnovationCenter for Mountain Ecology and Agro-Bioengineering, Guiyang 550025, Guizhou, China
    2Institute of GrassIndustry, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2021-05-27 Revised:2021-08-23 Online:2021-12-15 Published:2021-12-16
  • Contact: Wang Xiaoli,Zhao Degang E-mail:1964352203@qq.com;wangxiaolizhenyuan@126.com;dgzhao@gzu.edu.cn

Abstract:

In order to find strains increasing the drought resistance of maize during germination period under drought condition, we explored the physiological regulation of Bacillus subtilis strains on maize seed germination under drought stress. The experiment used four Bacillus subtilis species (R29-1, R9-1, R59, R60) from different locations and different plant rhizospheres in Guizhou province as materials. Maize seed germination indexes and physiological and biochemical indexes were analyzed by the weighting method of membership function and standard deviation coefficient under drought stress. The results showed that the inoculation of Bacillus subtilis R29-1, R9-1, R59, and R60 all enhanced the drought resistance of maize during germination period. The drought resistance was evaluated as R60 > R9-1 > R59 > R29-1 > CK2 (15% PEG), especially the inoculation of Bacillus subtilis R60 and R9-1 could better improve the drought resistance of maize. Inoculation of Bacillus subtilis could increase the stress resistance and free proline content of leaves during the germination process, and reduce the activities of superoxide dismutase, catalase and peroxidase of leaves so as to effectively reduce the damage of cell membrane. In conclusion, inoculation with Bacillus subtilis R60 could effectively enhance the germination and growth during the germination period.

Key words: Maize, Drought stress, Seed germination, Bacillus subtilis, Drought resistance measurement value

Table 1

Source and number of tested bacteria"

编号
Number
菌株名
Strain name
鉴定种类
Identification type
寄主
Host
采样地
Sampling site
A R29-1 Bacillus megaterium 野木豆 望谟麻山
B R9-1 Bacillus aryabhattai 多花木蓝 紫云火花
C R59 Bacillus megaterium 葛藤 荔波小七孔
D R60 Bacillus simplex 葛藤 荔波水浦

Table 2

Effects of different treatments on seeds germination and seedling water contents of maize"

处理
Treatment
发芽率
Germination rate
发芽势
Germination potential
发芽指数
Germination index
活力指数
Vitality index
幼苗含水量
Seedling moisture content (%)
CK1 0.5407±0.0485b 0.5185±0.0606a 26.897±1.041a 86.905±24.587ab 87.926±1.960a
A1 0.6963±0.0392a 0.6741±0.0518a 24.256±3.126ab 67.343±15.146b 88.129±0.848a
B1 0.6222±0.0256ab 0.5926±0.0322a 21.771±3.212b 85.964±8.405ab 89.655±0.433a
C1 0.7111±0.0256a 0.6518±0.0196a 27.605±2.138a 116.878±24.331a 89.818±0.562a
D1 0.6963±0.0074a 0.6815±0.0196a 26.854±0.237a 92.677±12.588ab 87.720±1.454a
CK2 0.5734±0.0569b 0.4582±0.0369b 17.841±1.834bc 24.764±2.305b 82.682±0.898a
A2 0.7731±0.0541a 0.7442±0.0698a 23.309±2.428a 30.262±6.146b 82.369±2.543a
B2 0.6724±0.0328ab 0.6354±0.0399a 17.242±0.782c 28.392±1.659b 85.005±0.913a
C2 0.7924±0.0366a 0.7106±0.0260a 18.082±0.417bc 25.673±5.573b 82.438±2.607a
D2 0.7704±0.0103a 0.7505±0.0266a 22.482±4.933ab 40.305±5.189a 85.464±0.536a

Table 3

Effects of different treatments on corn related growth indexes"

处理
Treatment
芽长
Bud length
(cm)
根长
Root length
(cm)
根数
The number
of root
总生物量干重
Total biomass
dry weight (g)
芽干重
Bud dry
weight (g)
根干重
Root dry
weight (g)
根冠比
Root shoot
ratio
芽鲜重
Bud fresh
weight (g)
根鲜重
Fresh root
weight (g)
CK1 5.12±0.52c 5.08±1.14c 7.067±1.10ab 0.36±0.03b 0.18±0.02c 0.18±0.01a 0.99±0.07a 1.61±0.20b 0.86±0.09b
A1 5.88±0.77bc 6.02±1.28bc 5.867±0.46b 0.33±0.02b 0.20±0.01bc 0.13±0.01b 0.64±0.03c 1.90±0.17b 0.96±0.06b
B1 6.44±0.14ab 8.04±0.82ab 6.933±0.70ab 0.41±0.02a 0.22±0.02ab 0.19±0.01a 0.84±0.09b 2.53±0.30a 1.42±0.06a
C1 6.84±0.78ab 9.95±1.84a 7.133±0.95ab 0.43±0.03a 0.24±0.02a 0.19±0.02a 0.76±0.07b 2.50±0.05a 1.44±0.31a
D1 7.18±0.35a 8.07±0.18ab 8.467±0.81a 0.42±0.02a 0.24±0.01a 0.18±0.02a 0.78±0.07b 2.47±0.11a 1.07±0.20b
CK2 4.01±0.29a 4.57±0.65bc 6.100±0.46a 0.23±0.00bc 0.12±0.00c 0.11±0.00ab 0.90±0.03a 0.93±0.11a 0.40±0.01d
A2 3.38±0.21b 3.72±0.37c 5.133±0.12a 0.23±0.01c 0.12±0.01c 0.10±0.00b 0.83±0.08a 0.83±0.10a 0.47±0.04cd
B2 3.95±0.18a 5.25±0.67b 5.667±1.36a 0.25±0.01ab 0.14±0.00ab 0.11±0.00ab 0.83±0.16a 0.98±0.05a 0.68±0.08b
C2 3.88±0.45a 5.08±0.42b 5.667±0.42a 0.25±0.01ab 0.13±0.01bc 0.12±0.02ab 0.92±0.16a 0.95±0.04a 0.57±0.09bc
D2 4.09±0.08a 6.19±0.37a 5.267±0.23a 0.26±0.02a 0.14±0.01a 0.12±0.01a 0.87±0.04a 0.95±0.11a 0.80±0.07a

Table 4

Comprehensive evaluation of maize germination drought resistance under drought stress"

处理
Treatment
加权抗旱指数
Weighted drought resistance index
隶属函数均值
Membership function mean
抗旱性量度值(D)
Drought resistance measure (D)
排名
Ranking
CK2 0.1523 0.3528 0.2296 5
A2 0.1604 0.3427 0.3587 4
B2 0.1538 0.5079 0.5288 2
C2 0.1507 0.4807 0.4314 3
D2 0.1605 0.6913 0.8026 1

Table 5

Correlation analysis of maize germination indexes under drought stress"

指标
Index
芽长
Bud
length
根长
Root
length
根数
The number
of root
总生物量干重
Total biomass
dry weight
芽干重
Bud dry
weight
根干重
Root dry
weight
根冠比
Root shoot
ratio
芽鲜重
Bud fresh
weight
根鲜重
Fresh
root
发芽指数
Germination
index
活力指数
Vitality
index
幼苗含水量
Seedling moisture
content
发芽率
Germination
rate
发芽势
Germination
potential
抗旱性量度值(D)
Drought resistance
measure (D)
芽长Bud length 1
根长Root length 0.803* 1
根数The number of root 0.656* 0.507 1
总生物量干重
Total biomass dry weight
0.478 0.387 0.320 1
芽干重Bud dry weigh 0.307 0.223 -0.057 0.142 1
根干重Root dry weight 0.226 0.143 0.229 -0.099 -0.032 1
根冠比Root shoot ratio 0.085 -0.077 0.079 -0.159 -0.388 0.862* 1
芽鲜重Bud fresh weight 0.674* 0.399 0.282 0.535 0.255 0.108 0.054 1
根鲜重Fresh root 0.194 0.338 -0.236 -0.048 0.347 0.103 -0.029 0.216 1
发芽指数Germination index -0.525 -0.264 -0.361 -0.557 -0.341 -0.385 -0.231 -0.668* 0.112 1
活力指数Vitality index 0.015 0.164 -0.201 -0.488 0.198 -0.163 -0.227 -0.289 0.587* 0.705 1
幼苗含水量
Seedling moisture content
0.497 0.494 0.059 0.045 0.780* -0.091 -0.388 0.268 0.659* -0.107 0.575 1
发芽率Germination rate -0.276 -0.360 -0.138 -0.581* -0.379 -0.471 -0.148 -0.330 -0.187 0.436 0.221 -0.156 1
发芽势Germination potential -0.432 -0.362 -0.286 -0.520 -0.243 -0.580 -0.285 -0.420 -0.178 0.458 0.153 -0.172 0.861* 1
抗旱性量度值(D)
Drought resistance measure (D)
0.444 0.503* 0.382 0.229 0.131 -0.184 -0.245 0.008 0.488 0.303 0.682* 0.601* 0.347 0.273 1

Fig.1

Effects of different strains treatments on the activities of SOD, CAT and POD during corn germination Lowercase letters represent significant differences at the 0.05 level, the same below"

Fig.2

The effects of different strain treatments on the contents of osmotic substance Pro and MDA during corn germination period"

[1] 焦志丽. 马铃薯干旱危害及提高抗旱性的研究. 哈尔滨:东北林业大学, 2012.
[2] 张飞, 王艳秋, 朱凯, 等. 聚乙二醇引发种子对高粱芽苗耐水分亏缺的生理调节. 中国农业大学学报, 2015, 20(5):39-47.
[3] 王孝先, 赵伟进, 卢玉君, 等. 砂生槐根际促生菌的筛选及干旱胁迫对其种子萌发和幼苗生长的影响. 高原农业, 2020, 4(3):249-258.
[4] 李晶. 黄瓜枯萎病高效拮抗枯草芽孢杆菌的筛选及生防机制研究. 哈尔滨:哈尔滨工业大学, 2010.
[5] 黄海婵, 裘娟萍. 枯草芽孢杆菌防治植物病害的研究进展. 农药市场信息, 2005(14):12-13,16.
[6] 刘培福. 枯草芽孢杆菌D221发酵条件优化及对辣椒根腐病防治效果初探. 哈尔滨:东北农业大学, 2011.
[7] 肖小露. 枯草芽孢杆菌BS193对辣椒疫病的生防作用及其抗菌机制初探. 福州:福建农林大学, 2017.
[8] 庞永彬. 枯草芽孢杆菌防治水稻稻瘟病效果研究. 农民致富之友, 2017(11):88.
[9] 李君保, 冉文秀. 枯草芽孢杆菌可湿性粉剂防治水稻穗颈瘟田间试验探讨. 农业与技术, 2019, 39(9):16-18.
[10] 张颖, 尹素改, 许玉彬, 等. 小麦内生枯草芽孢杆菌(Bacillus subtilis)T10菌株对小麦纹枯病的生防作用. 河南大学学报(自然科学版), 2014, 44(4):456-460.
[11] 刘刚. 枯草芽孢杆菌NJ-18和氟酰胺联合拌种防治小麦纹枯病效果好. 农药市场信息, 2013(22):39.
[12] 张军, 张凯, 王向阳. 井冈霉素·枯草芽孢杆菌混合剂对小麦全蚀病的防效研究. 安徽农学通报, 2013, 19(15):84,123.
[13] 毛腾霄, 叶华智, 秦玉花. 枯草芽孢杆菌BS-8D防治玉米纹枯病的田间试验效果及作用机理. 湖北农业科学, 2016, 55(20):5252-5255.
[14] 苏博, 顾双月, 丁婷. 枯草芽孢杆菌DZSY21抗玉米纹枯病的研究//中国植物病理学会2016年学术年会论文集. 中国植物病理学会, 2016: 3.
[15] 毛腾霄, 叶华智, 秦玉花. 枯草芽孢杆菌防治玉米纹枯病的初步研究. 中国农学通报, 2016, 32(5):44-48.
[16] Shilts T, Ertǜrk U, Patel N J, et al. Physiological regulation of biosynthesis of indole-3-acetic acid and other indole derivatives by the citrus fungal pathogen Colletotrichum acutatum. Australian Journal of Biological Sciences, 2005, 5(2):205-210.
[17] Cassan F, Bottini R, Schneider G, et al. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiology, 2001, 125:2053-2058.
doi: 10.1104/pp.125.4.2053
[18] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[19] 汪宝卿, 李召虎, 段留生, 等. 干旱胁迫下冠菌素对玉米幼苗光合参数和内源激素含量的影响. 植物生理学通讯, 2007(2):269-272.
[20] 王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015.
[21] 张霞, 谢小玉. PEG胁迫下甘蓝型油菜种子萌发期抗旱鉴定指标的研究. 西北农业学报, 2012, 21(2):72-77.
[22] 崔华威. 低温干旱胁迫对烟草种子发芽和幼苗生长的影响及提高其抗寒抗旱性的研究. 杭州:浙江大学, 2012.
[23] 张志良, 瞿伟菁. 植物生理学实验指导:第3版. 北京: 高等教育出版社, 1980.
[24] 余如刚, 杜雪玲, 陈楚, 等. PEG胁迫对三种豆科牧草种子萌发及幼苗生理影响. 干旱地区农业研究, 2012, 20(5):99-103.
[25] 魏波, 李丹丹, 侯凯, 等. PEG模拟干旱条件下红花种子萌发特性的比较研究. 植物生理学报, 2018, 54(6):1137-1143.
[26] Osakabe Y, Osakabe K, Shinozaki K, et al. Response of plants to water stress. Frontiers in Plant Science, 2014, 5:86.
doi: 10.3389/fpls.2014.00086 pmid: 24659993
[27] Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 1996, 14(3):89-97.
doi: 10.1016/0167-7799(96)80929-2
[28] 汤学军, 傅家瑞. 植物胚胎发育后期富集(LEA)蛋白的研究进展. 植物学报, 1997, 14(1):13-18.
[29] McCue K F, Hanson D. Drought and salt tolerance:towards understanding and application. Trends Biotechnology, 1990, 8(90):358-362.
doi: 10.1016/0167-7799(90)90225-M
[30] Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Biology, 1992, 43(4):83-116.
[31] Mittler R. Oxidative stress antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9):405-410.
pmid: 12234732
[32] Han H S, Lee K D. Plant growth promoting rhizobacteria effect on antioxidant status,photosynthesis,mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 2005, 1(3):210-215.
[33] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006
[34] 田利. 叶面喷施尿素提高玉米抗旱性的生理机制. 杨凌:西北农林科技大学, 2015.
[1] Zhang Yanru, Yang Zihe, Yang Rong, Han Jian, Jiao Jinlong, Zhao Li, Wu Yuanqi. Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections [J]. Crops, 2021, 37(5): 14-19.
[2] Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165.
[3] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
[4] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
[5] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[6] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[7] Yan Feng, Li Qingquan, Dong Yang, Ji Shengdong, Han Yehui, Yu Yunkai, Wang Lida, Zhao Suo. Effects of 60Co-γ Radiation on the Seed Germination and Seedling Growth of Broomcorn Millet [J]. Crops, 2021, 37(4): 202-205.
[8] Song Ruijiao, Feng Caijun, Qi Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress [J]. Crops, 2021, 37(4): 206-211.
[9] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[10] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[11] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[12] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[13] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[14] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[15] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!