Crops ›› 2021, Vol. 37 ›› Issue (4): 206-211.doi: 10.16035/j.issn.1001-7283.2021.04.032

Previous Articles     Next Articles

Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress

Song Ruijiao(), Feng Caijun, Qi Juncang()   

  1. Agricultural College of Shihezi University/The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
  • Received:2020-08-14 Revised:2020-12-24 Online:2021-08-15 Published:2021-08-13
  • Contact: Qi Juncang E-mail:435991524@qq.com;shzqjc@qq.com

Abstract:

To investigate the effects of hydrogen-rich water (HRW) on drought resistance in germination period and seedling biomass distribution under drought stress, barley variety Xinpi 6 was used as material, which cultured in 20% polyethylene glycol-6000 (PEG). The 16 indexes were compared in different concentrations of HRW, such as germination rate and seedling root-shoot ratio. The results showed that the suitable concentration of HRW treatment could significantly increase the germination rate, dry matter transfer amount, transfer rate, and conversion efficiency; reduced respiratory consumption of dry matter and root-shoot ratio; increased the roots and buds’ dry weight; promoted the accumulation of soluble sugar, soluble protein, and chlorophyll in barley seedlings. It could be concluded that suitable concentration of HRW could increase the germination rate of barley seeds under drought stress by regulating the transport of dry matter, and reduce the adverse effects of drought stress on the proportion of root and bud biomass of seedlings by regulating the contents of soluble sugar, soluble protein, and chlorophyll.

Key words: Hydrogen-rich water, Drought stress, Barley, Germination

Fig.1

Germination rate of barley seeds soaked in different concentrations HRW under drought stress Different lowercase letters indicate significant differences between treatments (P < 0.05), different capital letters indicate extremely significant differences between treatments (P < 0.01), the same below"

Table 1

The effects of seed soaking in different concentrations HRW on barley seed dry matter transport under drought stress"

富氢水浓度
HRW
concentration (%)
干物质转移量
Dry matter transfer amount (mg)
干物质转移率
Dry matter transfer
rate (%)
呼吸消耗干物质量
Respiratory consumption
of dry matter (mg)
干物质转化效率
Dry matter conversion
efficiency (%)
0(CK) 426.39±20.15bA 67.72±3.20bA 313.79±22.98aA 26.59±1.98bBC
25 454.13±8.20abA 72.12±1.31abA 302.89±12.83bA 33.36±1.64aB
50 465.49±19.97abA 73.93±3.17abA 303.79±20.49bA 34.87±1.58aA
75 474.26±2.20aA 75.32±0.35aA 310.89±8.68bA 34.45±1.61aB
100 482.59±10.51aA 76.64±1.67aA 362.93±15.91aA 24.87±1.73aC

Table 2

The effects of seed soaking in different concentrations HRW on root and bud biomass distribution of barley seedlings under drought stress"

富氢水浓度
HRW concentration (%)
幼苗干重
Seedling dry weight (mg)
根干重
Root dry weight (mg)
芽干重
Bud dry weight (mg)
根冠比
Root-shoot ratio
0(CK) 112.60±3.10bB 72.10±2.48cC 40.50±2.35cB 1.79±0.14abAB
25 151.23±4.72aA 82.70±4.69bcBC 68.53±0.68aA 1.21±0.07cB
50 161.70±1.76aA 91.97±2.40bAB 69.73±2.11aA 1.32±0.07bcAB
75 163.37±7.15aA 105.87±6.95aAB 57.50±1.81bA 1.85±0.13abAB
100 119.67±5.82bB 79.80±0.81bcBC 39.87±6.54cB 2.10±0.31aA

Fig.2

The effects of seed soaking in different concentrations HRW on barley seedling soluble sugar contents of root and bud under drought stress"

Fig.3

The effects of seed soaking in different concentrations HRW on barley seedling soluble protein contents of root and bud under drought stress"

Table 3

The effects of seed soaking in different concentrations HRW on barley seedling chlorophyll a, chlorophyll b and total chlorophyll contents under drought stress mg/g"

富氢水浓度
HRW concentration (%)
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
叶绿素总含量
Total chlorophyll content
0(CK) 780.07±23.21dC 249.68±21.52abA 1029.76±33.64cD
25 1173.08±63.89aA 259.51±15.37aA 1432.59±78.98aA
50 1034.44±34.40bB 218.03±7.17bA 1252.48±41.51bB
75 968.96±8.45bB 214.88±2.79bA 1183.84±9.79bBC
100 850.46±33.16cC 219.22±34.81bA 1069.69±67.54cCD
[1] 刘慧, 薛凤蕊. 中国大麦贸易现状及发展趋势. 农业展望, 2015,11(8):66-69.
[2] 周曙东, 周文魁, 林光华, 等. 未来气候变化对我国粮食安全的影响. 南京农业大学学报(社会科学版), 2013,13(1):56-65.
[3] Tan L Y, Chen S X, Wang T, et al. Proteomic insights into seed germination in response to environmental factors. Proteomics, 2013,13(12/13):1850-1870.
[4] 李淑梅, 董丽平, 王付娟. PEG模拟干旱胁迫对大麦种子萌发及生理特性的响应. 种子, 2016,35(10):99-101.
[5] 包奇军, 潘永东, 张华瑜, 等. 旱胁迫对啤酒大麦产量及酿造品质的影响. 干旱地区农业研究, 2016,34(5):27-34.
[6] 宋瑞娇, 齐军仓. 氢气的植物学作用研究进展. 植物生理学报, 2020,56(5):913-920.
[7] Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiology, 2014,165(2):759-773.
[8] Chen Y, Wang M, Hu L, et al. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress. Frontiers in Plant Science, 2017,8:128.
[9] Felix K, Su J C, Lu R F, et al. Hydrogen-induced tolerance against osmotic stress in alfalfa seedlings involves ABA signaling. Plant Soil, 2019,445:409-423.
[10] Tomoki S, Ryosuke K, Bunpei S. A convenient method for determining the concentration of hydrogen in water:use of methylene blue with colloidal platinum. Medical Gas Research, 2012,2(1):1-6.
[11] Soltani A, Gholipoor A, Zeinali E. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 2006,55:195-200.
[12] 李合生, 孙群, 赵世杰. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 195-197.
[13] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72:248-254.
[14] Arnon D I. Copper enzymes in isolated chlorplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949,24:1-15.
[15] Xu S, Zhu S, Jiang Y, et al. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant and Soil, 2013,370:47-57.
[16] 田婧芸, 张慧洁, 陕嘉楠, 等. 富氢水处理对铜胁迫下小麦幼苗生长及其细胞结构的影响. 河南农业大学学报, 2018,52(2):193-198.
[17] 施成晓, 陈婷, 王昌江, 等. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016,36(4):483-490.
[18] 贺海波, 李彦. 干旱、盐胁迫条件下两种盐生植物生物量分配对策的研究. 干旱区研究, 2008,25(2):242-247.
[19] 代小冬, 徐心志, 朱灿灿, 等. 谷子苗期对不同程度干旱胁迫的响应及抗旱性评价. 作物杂志, 2016(1):140-143.
[20] 姜颖, 左官强, 王晓楠, 等. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响. 干旱地区农业研究, 2020,38(3):74-80.
[21] 侯俊峰, 黄鑫, 侯阁阁, 等. 非结构性碳水化合物积累与小麦植株抗旱性及产量的关系. 西北农业学报, 2017,26(11):1590-1597.
[22] Wang Y, Duan X L, Xu S, et al. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation,water status and reactive oxygen species balance:a case study for rice. Annals of Botany, 2016,118(7):1279-1291.
[23] 顾正中, 周羊梅, 杨子博, 等. 干旱胁迫下淮麦33等不同小麦品种幼苗生理响应的研究. 西南农业学报, 2017,30(1):67-71.
[24] 刘军, 齐广平, 康燕霞, 等. 不同灌溉处理下紫花苜蓿光合特性、叶绿素荧光参数及生物量的变化. 草地学报, 2019,27(6):1569-1576.
[1] Yan Feng, Li Qingquan, Dong Yang, Ji Shengdong, Han Yehui, Yu Yunkai, Wang Lida, Zhao Suo. Effects of 60Co-γ Radiation on the Seed Germination and Seedling Growth of Broomcorn Millet [J]. Crops, 2021, 37(4): 202-205.
[2] Shi Yahan, Du Tianqing, Zhai Hongmei, Yang Shutian, Gong Rui, Li Yuhang, Lu Boyu, Cui Fuzhu, Gao Zhiqiang. Effects of Selenium on Seed Germination, Physiological Characteristics and Nutritional Quality of Kidney Bean [J]. Crops, 2021, 37(3): 210-216.
[3] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[4] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[5] Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53.
[6] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[7] Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89.
[8] Zhou Yuancheng, Chen Aiping, Cao Yongli, Wang Zhen, Zhao Yukun, Hou Donghong, Xie Lili. Relationship of β-amylase Accumulation in Barley Grain during Filling Stage and Meteorological Factors [J]. Crops, 2020, 36(6): 123-127.
[9] Fu Xuepeng, Shen Tongfei, Sun Xiaobo, Liu Xiaohan, Yang Xiaojie. Effects of Streptomyces sp. FXP04 on Seed Germination and Seedling Growth of Rice [J]. Crops, 2020, 36(6): 163-169.
[10] Di Na, Zheng Na, Han Haijun, Wang Jing, Cui Chao, Zheng Xiqing. The Stimulatory Effect of Different Sunflower Varieties Root Exudates on Germination of Sunflower Broomrape [J]. Crops, 2020, 36(6): 197-201.
[11] Li Guolong, Wu Haixia, Sun Yaqing. Construction of RNAi Expression Vector of BvWRKY23 Gene in Sugar Beet [J]. Crops, 2020, 36(5): 41-47.
[12] Zhang Haiyang, Li Haiyan, Meng Qinglin, He Chaoqun, Liu Shuqing. Effects of Different Fungicides on Field Control of Sunflower Sclerotinia Rot [J]. Crops, 2020, 36(4): 202-205.
[13] Yuan Changkai, Luo Haihua, Chen Gong, Gao Xin, Peng Jinjian, Xiang Chunling, Yin Mengyao, Wang Peipei, Xu Lanlan, Tang Feiyu. The Difference of Seed Germination in Different Cotton Genotypes in Response to Copper Stress [J]. Crops, 2020, 36(3): 53-59.
[14] Wang Lei,Wang Yue,Yan Zongshan,Li Runxi,Xie Zhongqing,Zhang Ziqiang,Zhang Xiangping. The Research of Starch and β-Glucan Accumulating Characteristics in Grain of Different Barley Varieties [J]. Crops, 2020, 36(2): 119-124.
[15] Demuqige,Liu Zhiping,Wang Lei,Wang Jinbo,Qi Haixiang,Xu Shoujun. Effect of Nitrogen Fertilizer on Photosynthetic Characteristics of Barley during Grain Filling Stage and Its Correlation Analysis [J]. Crops, 2020, 36(1): 103-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!