Crops ›› 2022, Vol. 38 ›› Issue (2): 64-68.doi: 10.16035/j.issn.1001-7283.2022.02.009

Previous Articles     Next Articles

Comparative Analysis and Research of Four Ear Traits of Six Generations and DH Generation of Tongyu 179

Li Zhongnan1(), Wang Yueren2, Che Limei1, Wu Shenghui2, Qu Haitao2, Song Tao2, Li Fulin2, Li Guangfa2,*()   

  1. 1Agricultural and Technology Extension Station of Jilin Province, Changchun 130033, Jilin, China
    2Tonghua Academy of Agricultural Sciences, Meihekou 135007, Jilin, China
  • Received:2021-01-22 Revised:2021-06-28 Online:2022-04-15 Published:2022-04-24
  • Contact: Li Guangfa E-mail:18741379479@163.com;lgftn666@sina.com

Abstract:

F1 (PH6WC×29, Reid) with higher average ear length advantage of Tongyu 179 was selected for haploid natural doubling large-scale breeding, and the six generation populations were established. The genetic parameters of the optimal genetic model for ear length, grain number per row, row number per ear and grain number per ear in six generations and DH generation were analyzed. The results showed that the polygenic inheritance of the ear length was 0 and the main genetic inheritance of grain number per row, row number per ear and grain number per ear were 56.80%-97.82%, 0-58.59% and 65.08%-93.70%, respectively, in the sixth generation. The heritability of the main genes for ear length, grain number per row, row number per ear and grain number per ear were 99.21%, 96.35%, 98.24% and 93.36% in the DH generation, respectively. The results showed that the grain number per row should be the primary goal when breeding female parent lines in conventional breeding in order to achieve the maximum grain number per ear. DH breeding should aim at ear length and at the same time take into account row number per ear in order to achieve the goal of the maximum grain number per ear more effectively.

Key words: Maize, Tongyu 179, Ear traits, Six generations, DH generation, Genetic parameter

Table 1

Statistical parameters of four traits from ear in six generations and DH generation"

世代
Generation
穗长Ear length (cm) 行粒数Grain number per row
平均值
Mean
最大值
Max.
最小值
Min.
变异系数
CV (%)
JB
P
平均值
Mean
最大值
Max.
最小值
Min.
变异系数
CV (%)
JB
P
P1 15.08 19.00 12.50 11.15 0.2102 27.29 35 20 13.18 0.6089
P2 19.09 23.00 16.50 8.37 0.1668 34.80 42 25 11.84 0.3826
F1 23.94 27.00 21.00 8.51 0.2985 45.48 51 35 8.77 0.1186
B1 16.78 26.00 7.00 20.06 0.7220 29.18 47 9 27.49 0.0304
B2 18.35 26.00 10.00 16.66 0.4910 29.60 49 14 26.19 0.0300
F2 18.47 25.50 9.00 15.89 0.0252 30.99 48 11 22.62 0.3938
DH 17.51 25.00 10.00 15.05 0.8492 21.69 48 6 31.34 0.0209
世代
Generation
穗行数Row number per ear 穗粒数Grain number per ear
平均值
Mean
最大值
Max.
最小值
Min.
变异系数
CV (%)
JB
P
平均值
Mean
最大值
Max.
最小值
Min.
变异系数
CV (%)
JB
P
P1 15.15 18 12 8.56 0.9413 412.31 560 308 13.69 0.7665
P2 12.33 14 10 9.90 0.8189 428.69 560 260 14.63 0.4147
F1 13.76 16 12 11.35 0.3850 623.60 768 504 11.84 0.4953
B1 13.98 20 8 12.94 0.0148 411.37 792 104 32.65 0.0617
B2 12.69 18 8 11.54 0.0831 377.84 736 140 30.47 0.0169
F2 13.28 18 8 12.35 0.1332 413.81 810 154 27.95 0.1131
DH 12.99 20 6 17.22 0.3742 287.71 680 48 39.00 0.0024

Table 2

Correlation coefficients of four traits from ear in B1, B2, F2 and DH generations"

世代
Generation
穗长-行粒数
Ear length-grain row
穗长-穗行数
Ear length-row ear
穗长-穗粒数
Ear length-grain ear
行粒数-穗行数
Grain row-row ear
行粒数-穗粒数
Grain row-grain ear
穗行数-穗粒数
Row ear-grain ear
B1 0.8589** 0.1703** 0.7856** 0.2442** 0.9206** 0.5876**
B2 0.7138** 0.0545 0.6325** 0.2012** 0.9247** 0.5482**
F2 0.7400** 0.1264* 0.6457** 0.2114** 0.8899** 0.6221**
DH 0.5039** 0.3222** 0.5130** 0.3876** 0.9115** 0.7061**

Table 3

The AIC values and optimal genetic models for four traits of ear"

世代
Generation
性状
Trait
模型
Model
AIC
AIC value
六世代
Six generation
穗长 PG-AD 9 042.4230
行粒数 MX2-ADI-AD 15 579.5220
穗行数 MX2-ADI-ADI 11 609.6518
穗粒数 MX2-ADI-AD 26 735.8812
DH世代
DH generation
穗长 4MG-AI 3 760.0759
行粒数 4MG-AI 8 009.2805
穗行数 4MG-AI 4 116.3295
穗粒数 4MG-AI 19 987.0925

Table 4

Test for goodness of optimal models"

性状
Trait
世代
Generation
统计量Statistic
U12 U22 U32 nW2 Dn
穗长
Ear length
P1 0.2263(0.646) 1.8527(0.174) 12.9770**(0) 2.0055**(0) 0.0907(0.361)
F1 2.6858(0.101) 2.0649(0.151) 0.3591(0.549) 4.2190**(0) 0.0237(1)
P2 0.4404(0.507) 2.3064(0.129) 12.2809**(0) 2.2773**(0) 0.1145(0.134)
B1 0.0357(0.850) 0.0060(0.938) 0.1774(0.674) 0.2145(0.244) 0.0038(1)
B2 5.3623*(0.021) 6.5819*(0.011) 1.6734(0.196) 4.7410**(0) 0.0727(0.057)
F2 10.1430**(0) 6.3448*(0.012) 5.1033*(0.024) 6.1470**(0) 0.0860**(0.005)
DH 0(0.998) 98.2266**(0) 1570.9810**(0) 134.3810(0.308) 0.0005(1)
行粒数
Grain number per row
P1 16.0480**(0) 23.5649**(0) 15.2270**(0) 18.0102(0.057) 0.0022(1)
F1 83.2569**(0) 112.1474**(0) 49.2907**(0) 29.7110(0.107) 0.0029(1)
P2 54.5706**(0) 45.5487**(0) 2.6067(0.106) 21.9070(0.075) 0.0078(1)
B1 0.0270(0.870) 0.1958(0.658) 1.2867(0.257) 0.1439(0.442) 0.0076(1)
B2 1.6154(0.204) 0.4177(0.518) 5.4626*(0.019) 0.7451**(0) 0.0027(1)
F2 0.0001(0.992) 0.0340(0.854) 0.4900(0.484) 0.2276(0.224) 0.0021(1)
DH 0.0754(0.784) 103.2528**(0) 1566.7230**(0) 134.3860(0.308) 0.0005(1)
穗行数
Row number per ear
P1 14.7270**(0) 22.0520**(0) 15.3749**(0) 17.9550(0.057) 0.0043(1)
F1 17.0569**(0) 52.4496**(0) 168.3091**(0) 23.5920(0.082) 0.0030(1)
P2 14.3016**(0) 20.6278**(0) 12.3939**(0) 17.6255(0.055) 0.0073(1)
B1 0.0016(0.968) 9.4124**(0) 154.4696**(0) 6.3598**(0) 0.0450(0.499)
B2 0.0213(0.884) 3.7900(0.052) 52.1590**(0) 4.5330**(0) 0.0537(0.284)
F2 0.0706(0.790) 3.2592(0.071) 68.0725**(0) 5.4729**(0) 0.0743*(0.023)
DH 0.0002(0.989) 98.5384**(0) 1572.3470**(0) 134.3990(0.308) 0.0005(1)
穗粒数 P1 44.3706**(0) 42.2680**(0) 0.0429(0.836) 21.0414(0.071) 0.0019(1)
Grain number per ear F1 148.9927**(0) 149.9990**(0) 2.9412(0.086) 35.7189(0.129) 0.0030(1)
P2 66.0026**(0) 51.9872**(0) 6.8855**(0) 22.9570(0.079) 0.0044(1)
B1 0.2273(0.634) 0.1435(0.705) 11.3015**(0) 0.3447(0.107) 0.0022(1)
B2 0.4854(0.486) 0.0313(0.860) 3.9625*(0.047) 0.5211*(0.036) 0.0030(1)
F2 0.3508(0.554) 0.0109(0.917) 3.5224(0.061) 0.3070(0.136) 0.0025(1)
DH 2.5923(0.107) 128.8881**(0) 1534.7460**(0) 134.6150(0.308) 0.0005(1)

Table 5

Estimate value of genetic parameters of four traits from ear in six generations"

遗传参数
Genetic parameter
穗长
Ear length
行粒数
Grain number per row
穗行数
Row number per ear
穗粒数
Grain number per ear
B1 B2 F2 B1 B2 F2 B1 B2 F2 B1 B2 F2
σ p 2 12.10 68.13 55.25 66.71 205.12 176.56 12.80 30.91 27.17 18 494.98 36 053.83 35 318.08
σ mg 2 37.89 186.52 172.71 0 18.11 14.37 12 037.24 33 783.77 32 749.94
σ pg 2 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00
σ 2 84.76 84.76 84.76 81.90 81.90 81.90 12.80 12.80 12.80 16 019.98 16 019.98 16 019.98
h mg 2 (%) 56.80 90.93 97.82 0 58.59 52.89 65.08 93.70 92.73
h pg 2 (%) 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00

Table 6

Estimate value of genetic parameters of four traits from ear in DH generation"

遗传参数
Genetic
parameter
估计值Estimate value
穗长
Ear
length
行粒数
Grain number
per row
穗行数
Row number
per ear
穗粒数
Grain number
per ear
σ p 2 23.0599 38.2098 12.7941 7076.1736
σ mg 2 22.8783 36.8140 12.5690 6606.4600
σ 2 0.1816 1.3958 0.2251 469.7136
h mg 2 (%) 99.21 96.35 98.24 93.36
[1] 李忠南, 王克伟, 王越人, 等. 玉米品种先玉335的血缘系谱及主要农艺性状遗传分析. 玉米科学, 2018, 26(3):32-39.
[2] 包和平, 李颖, 李春成. 高淀粉玉米郑单958主要农艺性状主基因+多基因遗传分析. 吉林农业大学学报, 2010, 32(3):245-248.
[3] 李忠南, 王越人, 邬生辉, 等. 玉米品种穗轴重和出籽率等性状的相关及遗传关系研究. 玉米科学, 2012, 20(5):33-39.
[4] 李光发, 李忠南, 王越人, 等. 玉米PH6WC组合与产量相关性状的灰色关联分析. 玉米科学, 2013, 21(6):45-48.
[5] 向道权, 黄烈键, 曹永国, 等. 玉米产量性状主基因-多基因遗传效应的初步研究. 华北农学报, 2001, 16(3):1-5.
[6] 李忠南, 王越人, 邬生辉, 等. 玉米主要性状GCA效应值的因子分析. 作物杂志, 2018(2):25-29.
[7] 石明亮, 孙权星, 陈小晖, 等. 玉米产量相关性状的遗传分析与育种应用. 福建农业学报, 2012, 27(12):1292-1297.
[8] 李忠南, 王越人, 张艳辉, 等. 玉米DH系15D969超多穗行数的遗传分析. 作物杂志, 2020(5):89-93.
[9] 李忠南, 王越人, 邬生辉, 等. 玉米单倍体自然加倍花粉结实力遗传的初步研究. 作物杂志, 2021(2):57-61.
[10] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[11] 孔繁玲. 植物数量遗传学. 北京: 中国农业大学出版社, 2006.
[12] Zhang M T, Edward H. Doubled haploids. Biotechnology in Agriculture and Forestry, 2009, 63:127-142.
[1] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[2] Li Yang, Ren Xiaoci, Li Xiaowei, Li Weitang, Huang Wei, He Zhongguo, Wang Baizhong. Combining Ability and Genetic Analysis of Yield and Main Grain Characteristics of Edible Sunflower [J]. Crops, 2022, 38(2): 75-80.
[3] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[4] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[5] Duan Yajuan, Cao Shiliang, Yu Tao, Li Wenyue, Yang Gengbin, Wang Chengbo, Liu Baomin, Liu Changhua. Identification of Salt Tolerance during Germination of Maize Inbred Lines [J]. Crops, 2022, 38(1): 213-219.
[6] Zhou Delong, Meng Lingcong, Zheng Shubo, Wang Nan, Li Mu, Wang Xinqi, Lu Shi, Wang Min, Liu Wenguo, Lu Ming. Establishing of a Fast and Efficient Testing Method of Transgenic Maize [J]. Crops, 2022, 38(1): 65-69.
[7] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[8] Zhang Yanru, Yang Zihe, Yang Rong, Han Jian, Jiao Jinlong, Zhao Li, Wu Yuanqi. Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections [J]. Crops, 2021, 37(5): 14-19.
[9] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
[10] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[11] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[12] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[13] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[14] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[15] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!