Crops ›› 2022, Vol. 38 ›› Issue (3): 1-8.doi: 10.16035/j.issn.1001-7283.2022.03.001
Yan Shengji1,2(), Shang Ziyin1,2, Deng Aixing1, Zhang Weijian1,2()
[1] | Intergovernmental Panel on Climate Change. Climate Change 2021:The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021. |
[2] |
Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828):248-256.
doi: 10.1038/s41586-020-2780-0 |
[3] | Intergovernmental Panel on Climate Change. Climate Change 2007:Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. |
[4] | National Coordination Committee on Climate Change. Second National Communication on Climate Change of the People's Republic of China. Beijing: China Planning Press, 2012. |
[5] | Intergovernmental Panel on Climate Change. Mitigation pathways compatible with 1.// Global Warming of 1.5℃. Cambridge: Cambridge University Press, 2018. |
[6] | Net zero traker. [2021-11-25]. https://zerotracker.net/. |
[7] | 陈迎, 巢清尘. 碳达峰、碳中和100问. 北京: 人民日报出版社, 2021. |
[8] | 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18):3892-3902. |
[9] | 严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48(4):1-13. |
[10] |
Ma R, Yu K, Xiao S, et al. Data-driven estimates of fertilizer-induced soil NH3,NO and N2O emissions from croplands in China and their climate change impacts. Global Change Biology, 2022, 28(3):1008-1022.
doi: 10.1111/gcb.15975 |
[11] |
Sosulski T, Szara E, Szymanska M, et al. Soil N2O emissions under conventional tillage conditions and from forest soil. Soil and Tillage Research, 2019, 190:86-91.
doi: 10.1016/j.still.2019.03.002 |
[12] | 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10):1781-1798. |
[13] | 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020, 39(4):842-851. |
[14] | 程功, 刘廷玺, 李东方, 等. 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响. 中国生态农业学报(中英文), 2019, 27(7):1004-1014. |
[15] |
Zou J, Lu Y, Huang Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution, 2010, 158(2):631-635.
doi: 10.1016/j.envpol.2009.08.026 |
[16] | 李艳春, 王义祥, 王成己, 等. 福建省农业生态系统氧化亚氮排放量估算及特征分析. 中国生态农业学报, 2014, 22(2):225-233. |
[17] | 张凡, 王政, 李旭祥. 西北旱区农田土壤N2O排放空间变化特征及影响因素探讨. 地球环境学报, 2016, 7(3):301-307. |
[18] | 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. |
[19] | 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行), 2011. |
[20] |
Gerber J S, Carlson K M, Makowski D, et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 2016, 22(10):3383-3394.
doi: 10.1111/gcb.13341 pmid: 27185532 |
[21] |
Richardson D, Felgate H, Watmough N, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle could enzymic regulation hold the key?. Trends in Biotechnology, 2009, 27(7):388-397.
doi: 10.1016/j.tibtech.2009.03.009 pmid: 19497629 |
[22] |
Signor D, Cerri C E P. Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical, 2013, 43(3):322-338.
doi: 10.1590/S1983-40632013000300014 |
[23] | 刘秀红, 杨庆, 吴昌永, 等. 不同污水生物脱氮工艺中N2O释放量及影响因素. 环境科学学报, 2006, 26(12):1940-1947. |
[24] |
Wrage N, van Groenigen J W, Oenema O, et al. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry, 2005, 19(22):3298-3306.
pmid: 16220527 |
[25] |
Kraft B, Tegetmeyer H E, Sharma R, et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science, 2014, 345(6197):676-679.
doi: 10.1126/science.1254070 |
[26] |
Zhang J, Tian H, Shi H, et al. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Global Change Biology, 2020, 26(11):6116-6133.
doi: 10.1111/gcb.15290 |
[27] |
Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964.
doi: 10.1111/gcb.12274 |
[28] |
Chen H, Zheng C, Chen F, et al. Less N2O emission from newly high-yielding cultivars of winter wheat. Agriculture Ecosystems and Environment, 2021, 320:107557.
doi: 10.1016/j.agee.2021.107557 |
[29] |
Li L, Zheng Z, Wang W, et al. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Global Change Biology, 2020, 26(2):931-943.
doi: 10.1111/gcb.14847 |
[30] |
Wang Y, Guo J, Vogt R D, et al. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Global Change Biology, 2018, 24(2):617-626.
doi: 10.1111/gcb.13816 |
[31] | 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017, 13(3):196-204. |
[32] |
Li Y, Lin E, Han X, et al. Effects of elevated carbon dioxide concentration on nitrous oxide emissions and nitrogen dynamics in a winter-wheat cropping system in northern China. Mitigation and Adaptation Strategies for Global Change, 2015, 20(7):1027-1040.
doi: 10.1007/s11027-013-9513-8 |
[33] |
Li Z L, Tang Z, Song Z P, et al. Variations and controlling factors of soil denitrification rate. Global Change Biology, 2022, 28(6):2133-2145.
doi: 10.1111/gcb.16066 |
[34] |
Ding J, Fang F, Lin W, et al. N2O emissions and source partitioning using stable isotopes under furrow and drip irrigation in vegetable field of North China. Science of the Total Environment, 2019, 665:709-717.
doi: 10.1016/j.scitotenv.2019.02.053 |
[35] | 陈友德, 赵杨, 高杜娟, 等. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响. 环境科学, 2020, 41(10):4701-4710. |
[36] |
Mazzoncini M, Antichi D, Bene C D, et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. European Journal of Agronomy, 2016, 77:156-165.
doi: 10.1016/j.eja.2016.02.011 |
[37] | Akiyama H, Yagi K, Yan X Y. Direct N2O emissions from rice paddy fields: summary of available data. Global Biogeochemical Cycles, 2005, 19(1):1-10. |
[38] |
Johannes L, Annette C, Caroline A. M, et al. Biochar in climate change mitigation. Nature Geoscience, 2021, 14(12):883-892.
doi: 10.1038/s41561-021-00852-8 |
[39] |
Liu Q, Liu B, Zhang Y, et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Global Change Biology, 2019, 25(6):2077-2093.
doi: 10.1111/gcb.14613 pmid: 30844112 |
[40] | 中华人民共和国农业农村部. 农业农村部关于加快发展农业社会化服务的指导意见. (2021-07-07)[2022-01-10]. http://www.moa.gov.cn/govpublic/NCJJTZ/202107/t20210712_6371571.htm. |
[41] | 张卫建, 张俊, 张会民, 等. 稻田土壤培肥与丰产增效耕作理论和技术. 北京: 科学出版社, 2021. |
|