Crops ›› 2022, Vol. 38 ›› Issue (5): 215-220.doi: 10.16035/j.issn.1001-7283.2022.05.031

Previous Articles     Next Articles

Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed

Tao Yueyue(), Sun Hua, Wang Haihou, Lu Changying(), Shen Mingxing   

  1. Taihu Research Institute of Agricultural Sciences/National Agricultural Experimental Station for Soil Quality, Xiangcheng, Suzhou 215155, Jiangsu, China
  • Received:2021-07-16 Revised:2021-09-12 Online:2022-10-15 Published:2022-10-19

Abstract:

In order to determine the appropriate harvest date and drying days of forage rapeseed, a field study was conducted from 2016 to 2018 in the Yangtze River Delta region. Rapeseed plants were harvested at five different dates from final-flowering stage to podding-stage, and then drying in the field till the weight constant. The biomass yield, crude protein content and water content of forage rapeseed were compared among different harvest dates and drying days. The results showed that compared to the first harvest date (at final-flowering stage), the fresh weight were significant higher at 4 to 16d after final-flowering stage, and the dry weight at the last four harvest dates were improved by 31.93%, 41.50%, 49.14% and 61.43%, respectively. The concent of crude protein trended to decrease with the harvest time delayed, the water content was significantly lower at the last harvest date (P < 0.05). Cutting 4d after final-flowering, the water content dropped from 82.16% to 71.45% and 65.26% after drying for four and five days in the field. The forage water content went down from 81.00% to 66.30% after drying for three days. In situ drying of the rapeseed plant in the field, the forage water content was decreased by 2.30% with the soil cumulative temperature increased by 10°C. Overall, in the Yangtze River Delta region, to obtain the ideal biological yield and crude protein content of forage rapeseed, it is optimum to harvest at four days after final flowering stage and then to be dried in situ for four and five days to meet the silage water requirement.

Key words: Harvest date, Drying period, Forage rapeseed, Biomass yield, Crude protein, Water content

Table 1

Main weather parameters during the drying period of forage rapeseed from 2016 to 2018"

年份
Year
处理
Treatment
空气温度
Air temperature (℃)
风速
Air speed (m/s)
日降雨量
Rainfall (mm)
空气湿度
Humidity (%)
日照辐射
Radiation (W/m2)
2016-2017 D0 20.66 0.22 2.27 59.04 242.20
D4 21.14 0.33 3.73 66.81 184.57
D8 21.96 0.36 2.95 69.24 180.02
D12 22.19 0.38 2.93 72.71 180.78
D16 23.21 0.26 2.30 63.24 234.44
平均 21.83 0.31 2.84 66.21 204.40
2017-2018 D0 22.05 0.29 2.36 71.56 187.30
D4 22.24 0.23 3.14 66.52 223.08
D8 22.62 0.28 3.75 69.97 189.62
D12 21.58 0.38 0.66 69.24 202.96
D16 24.75 0.37 0.25 68.33 234.88
平均 22.65 0.31 2.03 69.12 207.57

Table 2

F-statistics to assess the effects of year and harvest date on fresh weight, dry weight and water content of forage rapeseed"

试验年份Year 鲜重Fresh weight (t/hm2) 干重Dry weight (t/hm2) 含水量Water content (%)
2016-2017 102.27±4.65 18.57±0.90 81.55±0.53
2017-2018 99.30±2.86 19.59±0.64 80.25±0.37
D0 77.23±6.02b 14.00±1.16c 81.87±0.37a
D4 102.10±4.26a 18.47±0.92b 81.93±0.45a
D8 113.48±7.87a 19.81±0.95b 82.30±0.73a
D12 111.09±5.52a 20.88±1.22b 81.14±0.73a
D16 101.88±4.43a 22.60±0.90a 76.90±0.54b
FF-value
年份Year 0.33ns 0.02ns 2.13ns
刈割期Harvest date 4.88** 12.95*** 22.98***
年份×刈割期Year×Harvest date 1.91ns 2.85ns 2.82ns

Fig.1

Dynamics of biomass yield of forage rapeseed from final flowering to podding stage at different harvest dates"

Fig.2

Dynamics of water content of forage rapeseed from final flowering to podding stage at different harvest dates"

Fig.3

Dynamics of crude protein content of forage rapeseed from final flowering to podding stage at different harvest dates"

Fig.4

Dynamics of biomass yield, crude protein yield and crude protein content of forage rapeseed at different harvest dates"

Fig.5

The relationship between fresh weight, water content of forage rapeseed and the drying period"

Fig.6

The soil accumulated temperature during the drying period at different harvest dates and the relationship between the average soil accumulated temperature and water content of forage"

[1] 张哲, 殷艳, 刘芳, 等. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018, 40(5):618-623.
[2] 刘新红, 邓力超, 曲亮, 等. 油菜的多用途利用及产业发展建议. 湖南农业科学, 2018(5):100-103.
[3] 汪波, 宋丽君, 王宗凯, 等. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40(5):695-701.
[4] 罗其友, 刘洋, 唐华俊, 等. 新时期我国农业结构调整战略研究. 中国工程科学, 2018, 20(5):39-46.
[5] 傅廷栋, 涂金星, 张毅, 等. 在我国西北部地区麦后复种饲料油菜的研究与利用. 中国西部科技, 2004(6):4-7.
[6] 杨涛, 次仁云旦, 陈航, 等. 品种、播期、播量和施肥量对青饲油菜鲜草产量的影响. 西藏农业科技, 2016, 38(4):17-19.
[7] 李孟良, 郑琳, 杨安中, 等. 播期、密度对“双低油菜”菜苔营养成分及菜籽产量的影响. 草业学报, 2008, 17(3):137-141.
[8] 刘明, 肖佳雷, 李炜, 等. 不同播期对北方寒地麦后复种饲料油菜产量和品质的影响. 安徽农业科学, 2014, 42(36):12933-12934.
[9] 王洪超, 刘大森, 刘春龙, 等. 饲料油菜及其饲用价值研究进展. 土壤与作物, 2016, 5(1):60-64.
[10] 牟海日, 王春朋, 胡立艳. 辽宁地区种植国外饲料油菜的试验报告. 中国奶牛, 2012(3):9-11.
[11] 马乐天, 马小明, 马吉峰, 等. 麦后复种饲用油菜试验. 黑龙江畜牧兽医, 2012(4):104-105.
[12] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
[13] 黄燕, 吴平. SAS统计分析及应用. 北京: 机械工业出版社, 2005.
[14] 甘兴华, 李雯, 刘水华, 等. 7种饲料油菜的品比试验与分析. 江西畜牧兽医杂志, 2012(6):33-36.
[15] 文健, 刘桂琼, 姜勋平, 等. 饲用油菜生物量与营养成分测定及其发酵全混合日粮饲喂湖羊效果. 华中农业大学学报, 2018, 37(2):71-75.
[16] 王洪超, 刘大森, 刘春龙, 等. 饲料油菜及其饲用价值研究进展. 土壤与作物, 2016, 5(1):62-64.
[17] 俞晓红, 何文寿, 贾彪, 等. 播种量和收获期对饲料油菜产量和品质的影响. 江苏农业科学, 2017, 45(13):69-72.
[18] 陶玥玥, 汤云龙, 徐坚, 等. 不同移栽期下毯苗油菜的饲草产量与营养特性. 草业科学, 2019, 36(3):785-792.
[19] 庄益芬, 安宅一夫, 张文昌. 生物添加剂和含水率对紫花苜蓿和猫尾草青贮发酵品质的影响. 畜牧兽医学报, 2007, 38(12):1394-1400.
[20] 王亚犁. 利用饲用油菜复合青贮育肥秦川牛试验研究. 中国草食动物科学, 2005, 25(3):37-38.
[21] 李鸿祥, 韩建国. 收获期和调制方法对草木樨干草产量和质量的影响. 草地学报, 1999, 7(4):271-276.
[22] 张金霞, 刘雨田, 梁万鹏. 苜蓿含水量随田间晾晒时间的变化规律研究. 现代农业科技, 2015(7):284-285.
[23] 张颖超. 苜蓿田间干燥及超标水分草捆后续干燥研究. 呼和浩特:内蒙古农业大学, 2015.
[1] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[2] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[3] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[4] Tian Rongcai, Gao Zhiqiang, Lu Junwei. Estimation of Crude Protein Content in Grain of Early Indica Rice Based on Canopy Spectrum [J]. Crops, 2020, 36(4): 188-194.
[5] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[6] Fan Liqin,Li Lei,Wu Xia. Effects of Different Planting Patterns for Oil Sunflower on Saline-Alkali Soil Temperature, Moisture and Electrical Conductivity in Northern Yinchuan Irrigation District [J]. Crops, 2019, 35(6): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[7] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[8] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals[J]. Crops, 2018, 34(1): 16 -24 .
[9] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[10] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .