Crops ›› 2022, Vol. 38 ›› Issue (5): 221-228.doi: 10.16035/j.issn.1001-7283.2022.05.032

Previous Articles     Next Articles

Study of Rhizosphere Soil Microbial Changes of Atractylodes lancea Based on High-Throughput Sequencing

Xu Yan1(), Niu Junfeng1, Chen Lijun1, Wang Shiqiang1, Dong Zhongmin1,2, Wang Zhezhi1()   

  1. 1National Engineering Laboratory for the Development of Endangered Medicinal Materials in Northwest China, Xiʼan 710119, Shaanxi, China
    2Department of Biology, Saint Maryʼs University, Halifax B3H3C3, Nova Scotia, Canada
  • Received:2021-07-20 Revised:2022-06-17 Online:2022-10-15 Published:2022-10-19

Abstract:

Atractylodes lancea is a perennial herb, and the traditional planting method is to plant in the same plot for several years, which leads to the obstruction of its growth and development and the occurrence of soil borne diseases. Rhizosphere microorganisms are considered as the second genome of plants and play an important role in plant growth and development. In order to analyze the influence of cultivated A.lancea on rhizosphere soil microorganisms and explore the relationship between the occurrence of A.lancea disease and microbial changes, taking the rhizosphere soil planted with A.lancea for three years in Xialiang town, Zhashui county, Shaanxi province and the soil which has never been planted with A.lancea as experimental materials, the microbial community was sequenced by high-throughput sequencing method. The findings revealed that after three years of cultivation, the bacteria and fungal communities in the rhizosphere soil of A.lancea changed in composition, with the fungal communityʼs diversity and richness increasing. The dominant bacterial groups were Proteobacteria, Actinobacteria and Acidobacteria, while the predominant fungal groups were Ascomycota, Mortierellomycota and Basidiomycota. After three years of cultivation, the rhizosphere soil microorganisms of A.lancea showed an overall trend of beneficial bacteria decreasing and disease bacteria increasing.

Key words: High-throughput sequencing, Atractylodes lancea, Soil microorganism, Change

Fig.1

The dilution curves of bacteria and fungi in soil before and after planting A.lancea"

Fig.2

The venn diagrams of bacteria and fungi before and after planting A.lancea"

Table 1

The diversity index of bacteria and fungi"

微生物Microbe 组名Group name 观察到的种类Observed species Shannon 辛普森指数Simpson Chao1指数Chao1 Ace指数Ace
细菌Bacteria ZX3 1969.33 8.82 0.993479 2103.02 2135.13
ZXCK 2160.00 9.12 0.994796 2312.60 2323.52
真菌Fungi ZX3 1175.00 6.25 0.944552 1272.30 1237.16
ZXCK 1158.33 6.16 0.934756 1281.40 1237.32

Fig.3

Distribution of soil bacteria phyla before and after planting A.lancea"

Fig.4

Distribution of soil fungal phyla before and after planting A.lancea"

Fig.5

Analysis of different species of soil bacteria before and after planting A.lancea P < 0.05 means significant difference, P < 0.01 means extremely significant difference, the same below"

Fig.6

Analysis of different species of soil fungi before and after planting A.lancea"

Fig.7

Analysis of dominant genes of soil bacteria before and after planting A.lancea"

Fig.8

Cluster heat map of the dominant genera of soil bacteria before and after planting A.lancea"

Fig.9

Analysis of the dominant genera of soil fungi before and after planting A.lancea"

Fig.10

Cluster heat map of the dominant genus of soil fungi before and after planting A.lancea"

[1] 国家药典委员会. 中华人民共和国药典:一部. 北京: 中国医药科技出版社, 2015.
[2] 容路生, 姜大成. 北苍术繁育技术研究进展. 特种经济动植物, 2021, 24(3):36-38.
[3] 陈敏, 黄璐琦, 郭兰萍, 等. 苍术化感作用研究. 全国第二届中药资源生态学学术研讨会, 2006.
[4] 周芳, 曹国璠. 药用植物连作障碍机制及其缓解措施研究进展. 山地农业生物学报, 2019, 38(3):67-72.
[5] 葛昕欣. 苍术叶斑病病原学及其防治基础研究. 沈阳:沈阳农业大学, 2016.
[6] 章家恩, 蔡燕飞, 高爱霞, 等. 土壤微生物多样性实验研究方法概述. 土壤, 2004, 36(4):346-350.
[7] 金明. 土壤微生物多样性分析方法的研究进展. 农业技术与装备, 2016(4):18-20.
[8] 李桂澜, 匡华. 高通量测序技术在食品微生物检测中的应用. 食品安全质量检测学报, 2019, 10(15):5091-5097.
[9] Aßhauer K P, Bernd W, Rolf D. Tax4Fun:predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015, 31(17):2882-2884.
doi: 10.1093/bioinformatics/btv287
[10] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 2011, 17(1):121-125.
[11] Haas B J, Gevers D, Earl A M. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 2011, 21(3):494-504.
doi: 10.1101/gr.112730.110 pmid: 21212162
[12] Edgar R C. highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604
[13] Wang Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
doi: 10.1128/AEM.00062-07 pmid: 17586664
[14] Quast C, Pruesse E, Yilmaz P. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools. Nucleic Acids Research, 2013, 41:590-596.
[15] Bennett A J, Bending G D, Chindler C. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biological Reviews of the Cambridge Philosophical Society, 2012, 87(1):52-71.
[16] 简在友, 王文全, 孟丽, 等. 人参属药用植物连作障碍研究进展. 中国现代中药, 2008, 10(6):3-5.
[17] Wang X. Study on Continuous Cropping Obstacle and Control Strategy of Medicinal Plants. Hohhot,Inner Mongolia,China: International Conference on Economics, 2017.
[18] Jacek K, Jan K E. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biology and Biochemistry, 2000, 32(10):1405-1417.
doi: 10.1016/S0038-0717(00)00058-4
[19] Berg G, Köberl M, Rybakova D. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, 2017, 93(5):fix050.
[20] Garbeva P, Veen J V, Elsas J V. Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42:243-270.
pmid: 15283667
[21] Souto X C, Pellissier F. Feedback mechanism in the chemical ecology of plants:role of soil microorganisms. Massachusetts:Birkhäuser Basel, 2002:89-97.
[22] 郭兰萍, 黄璐琦. 苍术根茎及根际土水提物生物活性研究及化感物质的鉴定. 生态学报, 2006(2):528-535.
[23] 丁凯, 张毓婷, 张俊红, 等. 不同密度杉木林对林下植被和土壤微生物群落结构的影响. 植物生态学报, 2021, 45(1):62-73.
[24] 胡江春, 王书锦. 大豆连作障碍研究Ⅰ. 大豆连作土壤紫青霉菌的毒素作用研究. 应用生态学报, 1996(4):396-400.
[25] 段靖禹, 李华, 马学文, 等. 青霉菌与生物炭复合修复土壤砷污染的研究. 环境科学学报, 2019, 39(6):1999-2005.
[26] Probst C M, Ridgway H J, Jaspers M V. Pathogenicity of Ilyonectria liriodendri and Dactylonectria macrodidyma propagules in grapevines. European Journal of Plant Pathology, 2019, 154:405-421.
doi: 10.1007/s10658-018-01664-0
[27] Agustí-Brisach C, Cabral A, González-Domínguez E. Characterization of Cylindrodendrum,Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain,with description of Cylindrodendrum alicantinum sp. nov. European Journal of Plant Pathology, 2016, 145(1):103-118.
doi: 10.1007/s10658-015-0820-7
[28] Malapi-Wight M, Salgado-Salazar C, Demers J. Draft genome sequence of Dactylonectria macrodydima,a plant pathogenic fungus in the Nectriaceae. Genome Announcements, 2015, 3(2):278-280.
[29] VanInsberghe D, Maas K R, Cardenas E. Non-symbiotic Bradyrhizobiu ecotypes dominate North American forestsoils. The ISME Journal, 2015, 9(11):2435-2441.
doi: 10.1038/ismej.2015.54
[30] 迪拉热·海米提, 樊永红, 王伟楠, 等. 盐穗木叶片及根际土壤微生物群落高通量分析. 新疆农业科学, 2021, 58(4):731-740.
doi: 10.6048/j.issn.1001-4330.2021.04.016
[31] Beimforde C, Feldberg K, Nylinder S. Estimating the phanerozoic history of the ascomycota lineages:combining fossil and molecular data. Molecular Phylogenetics and Evolution, 2014, 78:386-398.
doi: 10.1016/j.ympev.2014.04.024
[32] Kalita M, Malek W. Genista tinctoria microsymbionts from Poland are new members of Bradyrizobium japonicum bv. genis tearum. Systematic and Applied Microbiology, 2010, 33(5):252-259.
doi: 10.1016/j.syapm.2010.03.005
[33] 沙娜瓦尔·色买提, 玉山江·买买提, 郭庆元, 等. 枣果霉烂病病原鉴定(二)——引起新疆枣果霉烂病的几种青霉菌的分离鉴定. 新疆农业科学, 2016, 53(4):698-705.
[34] 王振兴, 陶敏. 一株鞘氨醇单胞菌的分离鉴定及性质表征. 大连工业大学学报, 2019, 38(6):403-407.
[35] 郭兰萍, 黄璐琦. 栽培苍术根际土壤微生物变化. 中国中药杂志, 2007(12):1131-1133.
[36] 唐乐曹, 国璠. 土壤改良剂对连作白术质量、病害及土壤酶活性的影响. 河南农业科学, 2020, 49(3):54-62.
[37] 张燕, 樱井美希, 陈美兰, 等. 不同石灰处理对苍术生长、产量和挥发性成分影响的研究. 中药材, 2015, 38(3):429-432.
[38] 张猛, 曹国璠. 土壤改良剂对连作白术的品质、发病率及根部土壤酶活性的影响. 中药材, 2021, 44(4):793-797.
[1] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[2] Yan Shengji, Shang Ziyin, Deng Aixing, Zhang Weijian. Spatiotemporal Characteristics and Reduction Approaches of Farmland N2O Emission in China [J]. Crops, 2022, 38(3): 1-8.
[3] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[4] Lin Ruxia, Guo Fengdan, Wang Xingjun, Xia Han, Hou Lei. Advances in Peanut Molecular Breeding [J]. Crops, 2021, 37(5): 1-5.
[5] Wang Lifang, Zhang Dejian, Zhang Tingting. Effects of Tillage Methods on Soil Microbial Community Diversity in Oat Fields [J]. Crops, 2021, 37(3): 57-64.
[6] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[7] Li Wenxu, Wu Zhengqing, Lei Zhensheng, Jiang Guiying. The Characteristics of Climate Factors Change and Its Effects on Main Grain Crops Yield per Unit Area in Henan Province [J]. Crops, 2021, 37(1): 124-134.
[8] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[9] Xu Hanlin,Liu Yao,Yuan Xiaofeng,Pan Jie,Weng Qiaoyun,Lü Aizhi,Liu Yinghui. Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province [J]. Crops, 2020, 36(1): 124-129.
[10] Li Bo,Gong Liang,Qu Hang,Jin Dandan,Sun Wentao. Effects of Nitrogen Application Rate on Rice Growth and Yield in Liaohe Delta [J]. Crops, 2020, 36(1): 173-178.
[11] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015 [J]. Crops, 2019, 35(6): 8-13.
[12] Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian. Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients [J]. Crops, 2019, 35(6): 104-113.
[13] Duan Bin,Fang Ling,He Shijie,Li Huilong,Peng Bo,Song Xiaohua,Hu Yang. Effects of the Temperature Change Based on Sowing Date on the Period from Seeding to Heading and the Filling and Ripening Stage of Japonica Rice in Southern Henan Province [J]. Crops, 2019, 35(3): 99-105.
[14] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology [J]. Crops, 2018, 34(1): 160-165.
[15] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .