Crops ›› 2022, Vol. 38 ›› Issue (6): 174-180.doi: 10.16035/j.issn.1001-7283.2022.06.025

Previous Articles     Next Articles

Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress

Hou Xue1(), Chen Yujie1(), Li Chunmiao1, Fang Shumei1,2(), Liang Xilong1,2(), Zheng Dianfeng1,3   

  1. 1Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing 163319, Heilongjiang, China
    3Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
  • Received:2021-09-06 Revised:2021-11-19 Online:2022-12-15 Published:2022-12-21
  • Contact: Fang Shumei,Liang Xilong E-mail:1450674207@qq.com;1414554166@qq.com;fangshumei520@126.com;xilongliang@126.com

Abstract:

Lüfeng 2 and Lüfeng 5 were used as the experiment materials. 150mmol/L mixed saline-alkali stress was applied and different concentrations of prohexadione-calcium (Pro-Ca) were foliar sprayed during the first compound leaf development period. Samples were collected after 15 days of continued growth to study the regulation effects of different concentrations of Pro-Ca on the growth of mung bean seedlings. The results showed that the suitable concentration of Pro-Ca (100mg/L) could maintain cell osmotic potential, eliminate reactive oxygen species, reduce the degree of membrane peroxidation, and protect cell membrane structure by increasing the content of osmotic substances, enhancing the activity of antioxidant enzymes, and reducing the content of MDA, thereby alleviating the damage to mung bean seedlings caused by salt-alkali stress, and improving the resistance of mung bean seedlings to salt-alkali. Specifically, the plant height of Lüfeng 2 and Lüfeng 5 decreased by 29.64% and 21.72%, the underground dry weight increased by 33.33% and 50.00%, and the root-to-shoot ratio increased by 42.86% and 8.33%, chlorophyll content increased by 15.77% and 18.55%, respectively, under the treatment of 100mg/L.

Key words: Saline-alkali stress, Prohexadione-calcium, Mung bean, Osmotic adjustment, Protective enzymes

Table 1

Effects of Pro-Ca on plant morphological indexes of mung bean seedlings under salt-alkali stress"

处理浓度
Treatment concentration (mg/L)
品种
Variety
株高
Plant height (cm)
茎粗
Stem diameter (mm)
地上部干重
Shoot dry weight (g)
地下部干重
Root dry weight (g)
根冠比
R/S
0 (CK) 绿丰2号 20.58±2.12a 1.43±0.19a 0.20±0.05a 0.03±0.01c 0.14±0.07b
绿丰5号 20.44±3.10a 1.43±0.19b 0.23±0.08a 0.04±0.02b 0.24±0.22a
50 绿丰2号 15.43±1.65bc 1.45±0.33a 0.24±0.10a 0.05±0.01ab 0.22±0.10a
绿丰5号 19.18±2.12a 1.55±0.24ab 0.25±0.10a 0.04±0.02b 0.17±0.08ab
100 绿丰2号 14.48±1.67c 1.43±0.26a 0.23±0.10a 0.04±0.02b 0.20±0.09ab
绿丰5号 16.00±1.49b 1.65±0.26a 0.28±0.08a 0.08±0.08a 0.26±0.17a
150 绿丰2号 13.82±2.64c 1.43±0.18a 0.24±0.09a 0.04±0.02bc 0.18±0.09ab
绿丰5号 18.77±3.17a 1.58±0.15ab 0.25±0.07a 0.03±0.01b 0.12±0.05b
200 绿丰2号 16.69±1.96b 1.38±0.18a 0.28±0.11a 0.05±0.01a 0.21±0.10a
绿丰5号 18.33±2.60a 1.48±0.24ab 0.29±0.14a 0.04±0.01b 0.17±0.09ab
FF-value 处理 10.912** 0.892 1.629 4.480** 2.720*
品种 19.301** 5.314* 2.086 1.937 0.017
处理×品种 2.823* 0.539 0.191 4.058* 2.944*

Fig.1

Effects of Pro-Ca on SPAD of mung bean seedlings under salt-alkali stress The same letters indicate no significant difference with treatment (P > 0.05)"

Table 2

Effects of Pro-Ca on osmotic adjustment substances in mung bean seedlings under salt-alkali stress"

处理浓度
Treatment concentration (mg/L)
品种
Variety
可溶性糖含量
Soluble sugar content (m/g FW)
可溶性蛋白质含量
Soluble protein content (m/g FW)
脯氨酸含量
Proline content (μg/g FW)
0(CK) 绿丰2号 3.89±0.17a 4.44±0.02a 18.58±5.62a
绿丰5号 2.62±0.29a 4.18±0.17b 12.62±2.25a
50 绿丰2号 7.42±0.23bc 6.37±0.12a 21.94±1.92a
绿丰5号 4.49±0.20a 5.63±0.14ab 15.31±3.58a
100 绿丰2号 10.63±0.34c 4.63±0.19a 35.68±2.25a
绿丰5号 10.10±0.42b 6.43±0.12a 36.25±6.80a
150 绿丰2号 11.80±0.46c 4.94±0.09a 40.67±1.16a
绿丰5号 9.27±0.26a 4.93±0.05ab 36.25±1.73a
200 绿丰2号 9.62±0.28b 5.65±0.17a 21.94±3.66a
绿丰5号 9.09±0.10a 4.72±0.05ab 31.74±4.56a
FF-value 处理 702.983** 156.345** 43.608**
品种 211.231** 0.346 2.836
处理×品种 21.760** 114.639** 2.501

Table 3

Effects of Pro-Ca on the SOD, POD and CAT activity of mung bean seedlings under salt-alkali stress"

处理浓度
Treatment concentration (mg/L)
品种
Variety
SOD活性
SOD activity (U/g FW)
POD活性
POD activity (U/g FW)
CAT活性
CAT activity (U/g FW)
0(CK) 绿丰2号 285.71±4.79a 1188.89±732.07a 311.11±27.76a
绿丰5号 310.08±18.43a 877.78±150.31b 404.44±20.37a
50 绿丰2号 323.81±15.74bc 2388.89±171.05a 337.78±40.73a
绿丰5号 330.90±19.17a 1788.89±69.39ab 524.44±7.70a
100 绿丰2号 334.00±2.03c 3644.44±509.18a 466.67±48.07a
绿丰5号 349.06±23.93b 2344.44±101.84a 546.67±0.00a
150 绿丰2号 319.82±21.48c 2433.33±200.00a 391.11±20.37a
绿丰5号 324.25±5.79a 2255.56±69.39ab 471.11±7.70a
200 绿丰2号 310.08±18.09b 1911.11±69.39a 315.56±7.70a
绿丰5号 318.05±2.77a 1988.89±830.22ab 317.78±27.76a
FF-value 处理 6.566** 18.911** 33.286**
品种 4.367 10.008** 135.309**
处理×品种 0.408 2.614 4.605**

Table 4

Effects of Pro-Ca on MDA content (mmol/g FW) of mung bean seedlings under salt-alkali stress"

处理浓度
Treatment
concentration (mg/L)
品种
Variety
MDA含量
MDA content
(mmol/g FW)
0 (CK) 绿丰2号 33.99±0.84a
绿丰5号 23.66±0.67a
50 绿丰2号 28.52±7.57bc
绿丰5号 22.21±0.28a
100 绿丰2号 26.20±0.51c
绿丰5号 20.99±1.38b
150 绿丰2号 26.02±0.44c
绿丰5号 22.00±2.20a
200 绿丰2号 21.73±0.55b
绿丰5号 19.61±0.60a
FF-value 处理 7.953**
品种 35.401**
处理×品种 2.124
[1] Li J, Pu L, Han M, et al. Soil salinization research in China:advances and prospects. Journal of Geographical Sciences, 2014, 24(5):943-960.
doi: 10.1007/s11442-014-1130-2
[2] Oster J, Shainberg I, Abrol I. Reclamation of salt-affected soils. Agricultural Drainage, 1999, 38(19):659-691.
[3] Feng W Z, Chen Q, Ma C H. Physico-chemical characteristics and microbial composition of saline-alkaline soils in Songnen Plain. Soils, 2007, 39(2):301-305.
[4] Abd-Alla M, Vuong T, Harper J. Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Science, 1998, 38(1):72-77.
doi: 10.2135/cropsci1998.0011183X003800010013x
[5] Noble T. Development of the mungbean nested association mapping (NAM) resource. Brisbane: Queensland University of Technology, 2017.
[6] Kumawat N, Kumar R, Sharma O. Nutrient uptake and yield of mung bean [Vigna radiata (L.) Wilczek] as influenced by organic manures,PSB and phosphorus fertilization. Environment and Ecology, 2009, 27(4B):2002-2005.
[7] Bhanu A, Singh M, Srivastava K. Screening mungbean [Vigna radiata (L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition. Advances in Plants and Agriculture Research, 2017, 7(6):00276.
[8] 程须珍. 绿豆生产技术. 北京: 北京教育出版社, 2016.
[9] 林汝法, 柴岩, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
[10] 徐宁, 曲祥春, 王明海, 等. 绿豆主要株型性状的遗传. 中国农业大学学报, 2019, 24(4):24-35.
[11] Kamiya Y, Kobayashi M, Fujioka S, et al. Effects of a plant growth regulator,prohexadione calcium (BX-112),on the elongation of rice shoots caused by exogenously applied gibberellins and helminthosporol,Part II1. Plant and Cell Physiology, 1991, 32(8):1205-1210.
[12] Winkler V W. Reduced risk concept for prohexadione-calcium,avegetative growth control plant growth regulator in apples. International Society for Horticultural Science (ISHS), 1997, 451:667-672.
[13] Soleimani Aghdam M. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-33.
doi: 10.1007/s13197-013-0994-y pmid: 24426014
[14] Rezapour Fard J, Kafi M, Naderi R. The enhancement of drought stress tolerance of kentucky bluegrass by prohexadione-calcium treatment. Journal of Ornamental Plants, 2015, 5(4):197-204.
[15] Bekheta M A, Abdelhamid M T, El-Morsi A A. Physiological response of vicia faba to prohexadione-calcium under saline conditions. Planta Daninha, 2009, 27:769-779.
doi: 10.1590/S0100-83582009000400015
[16] 葛莹, 李建东. 盐生植被在土壤积盐——脱盐过程中作用的初探. 草业学报, 1990(1):70-76.
[17] Benjamin J G, Nielsen D C, Vigil M F, et al. Water deficit stress effects on corn (Zea mays L.) root: shoot ratio. Open Journal of Soil Science, 2014(4):151-160.
[18] Liu Z, Zhang H, Yang X, et al. Effects of soil salinity on growth,ion relations,and compatible solute accumulation of two sumac species:Rhus glabra and Rhus trilobata. Communications in Soil Science and Plant Analysis, 2013, 44(21):3187-3204.
doi: 10.1080/00103624.2013.832289
[19] Nasr S M H, Parsakhoo A, Naghavi H, et al. Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.). New Forests, 2012, 43(1):45-55.
doi: 10.1007/s11056-011-9265-9
[20] Itai C, Benzioni A. Water stress and hormonal response,water and plant life. Springer, 1976, 19:225-242.
[21] Zuccarini P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil and Environment, 2007, 53(7):283-289.
doi: 10.17221/2209-PSE
[22] Ozbay N, Ergun N. Prohexadione calcium on the growth and quality of eggplant seedlings. Pesquisa Agropecuária Brasileira, 2015, 50:932-938.
doi: 10.1590/S0100-204X2015001000009
[23] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 2000, 51(1):463-499.
[24] Sun J, He L, Li T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE, 2019, 14(7):e0220340.
[25] Vendruscolo E C G, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007, 164(10):1367-1376.
pmid: 17604875
[26] Doganlar Z B, Demir K, Basak H, et al. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 2010, 5(15):2056-2065.
[27] Wang X, Geng S, Ri Y J, et al. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 2011, 130(1):248-255.
doi: 10.1016/j.scienta.2011.07.006
[28] Aghdam M S. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-1033.
doi: 10.1007/s13197-013-0994-y pmid: 24426014
[29] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
pmid: 15590011
[30] De Azevedo Neto A D, Prisco J T, Enéas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56(1):87-94.
doi: 10.1016/j.envexpbot.2005.01.008
[31] McKay H, Mason W. Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Canadian Journal of Forest Research, 1991, 21(6):890-901.
doi: 10.1139/x91-124
[32] Ramírez H, Herrera-Gámez B, Benavides-Mendoza A, et al. Prohexadione calcium increases antioxidant capacity,lycopene content and enzymatic activity in fruits of tomato Floradade. Revista Chapingo. Serie Horticultura, 2010, 16(3):155-160.
[1] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[2] Zhu Xu, Hu Weili, Yang Houyong, Xu Yang, Xiang Zhen, Yang Ling, Yang Pengcheng. Analysis of Suitable Agronomic Traits for Mechanized Harvesting Mung Bean Varieties (Lines) in Nanyang Basin [J]. Crops, 2021, 37(4): 93-98.
[3] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[4] Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202.
[5] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[6] Ye Weijun,Yang Yong,Zhang Liya,Tian Dongfeng,Zhang Lingling,Zhou Bin. Effects of Nitrogen on Agronomic Traits and Nitrogen Use Efficiency of Mung Bean Cultivar Wankelü 3 [J]. Crops, 2019, 35(3): 137-141.
[7] Yin Lili,Chen Xiaoliang,Chen Lulu,Fang Yarong,Cao Jiaqi,Zhou Feng,Li Feng,Li Zhen. Effects of NaCl, Na2SO4 and Na2CO3 Stress on the Seed Germination of Mung Bean [J]. Crops, 2019, 35(3): 192-196.
[8] Liu Zhenxing,Zhou Guimei,Chen Jian,Zhao Hui. Control Efficiency of Several Biological Pesticides on Mung Bean Leaf Spot Disease [J]. Crops, 2018, 34(6): 154-157.
[9] Chunming Zhang,Xueying Zhao,Hubin Yan,Huijun Zhu,Zeyan Zhang,Yaowen Zhang. Effects of Film Mulching Modes and Population Density on Photosynthesis Characteristics and Yield of Mung Bean in Arid Land [J]. Crops, 2018, 34(3): 108-115.
[10] Chendan Liu,Zeyan Zhang,Yaowen Zhang. Identification of Drought Tolerance in Bud Stage of Different Genotypes of Mung Bean [J]. Crops, 2018, 34(3): 77-83.
[11] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress [J]. Crops, 2018, 34(1): 166-172.
[12] Pengyan Guo,Caiping Wang,Jiecheng Ren,Jiping Zhao,Ying Xu,Maolin Yue. Genetic Diversity of Agronomic Traits of Mung Beans from Different Geographical Sources [J]. Crops, 2017, 33(6): 55-59.
[13] Ruifeng Guo,Yongfu Zhang,Yuemei Ren,Zhong Yang. Effects of Saline-Alkali Stress on Millet Germination and Shoots Growth and Saline-Alkali Tolerance Variety Screening [J]. Crops, 2017, 33(4): 63-66.
[14] Haiyun Rui,Xingxing Zhang,Zhenguo Shen,Fenqin Zhang. Water Deficit Stress and Osmotic Substances Accumulation of Vicia sativa L. under Cadmium Stress [J]. Crops, 2017, 33(3): 69-74.
[15] Yunshan Wei,Zailong Lin,Xuechao Zhou,Surong Ding,Yingchun Liu,Feng Li. Dynamic Analysis on Population Growth and Yield of Mung Bean Affected by Different Sowing Time in Arid Regions [J]. Crops, 2017, 33(2): 109-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!