Crops ›› 2024, Vol. 40 ›› Issue (1): 1-7.doi: 10.16035/j.issn.1001-7283.2024.01.001

    Next Articles

Development and Challenge of Crop Breeding by Design System in China

Du Ming1(), Wang Ahong2, Feng Qi2(), Fang Yu1,3()   

  1. 1Shanghai ZKW Molecular Breeding Technology Co., Ltd., Shanghai 200234, China
    2Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences / National Center for Gene Research, Shanghai 200233, China
    3Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2022-12-07 Revised:2023-02-11 Online:2024-02-15 Published:2024-02-20
  • Contact: Feng Qi,Fang Yu E-mail:dm@zkwbreeding.com;qfeng@ncgr.ac.cn;fy@zkwbreeding.com

Abstract:

Crop breeding by design is a crucial area of research in global breeding technology. In order to create crop varieties that satisfy a range of environmental requirements and are useful for a variety of purposes, it aims to combine advantageous alleles and overcome obstacles related to gene spatial expression. Crop breeding by design is a multidisciplinary field that necessitates the integration of genetics, biotechnology, information technology, mechanical engineering, agriculture, and materials science. From phenotype-based selection in the beginning to genome-based or gene-level design in the present, it has changed, demonstrating a process of incremental development and technological breakthrough. This paper summarized the development history of crop breeding, based on the development rules and requirements, and outlined the future trend of crop breeding by design formation. This paper also highlighted the challenges facing the integration of new and conventional breeding technologies and commercialization of crop breeding by design. Ultimately, it aimed to explore a future commercial crop breeding by design system that meets the evolving needs of Chinese seed industry, driven by underlying technologies.

Key words: Breeding by design, Crops, Molecular breeding, System

Fig.1

Development pathway of crop breeding by design"

Table 1

Breeding technology of different development stages"

育种阶段Breeding stage 文献 [14] Reference [14] 文献 [11] Reference [11]
1.0
覆盖过去上万年的作物育种发展历程,耕作者的偶然选择 原始驯化选育(通过人工选择,优中选优,将野生种驯化为栽培种并进一步选育为优良品种与种质)
2.0 始于19世纪末,统计和试验设计提高选育能力 常规育种(包括杂交育种、诱变育种、杂种优势利用等育种方法)
3.0
贯穿20世纪末至今,遗传与基因组数据的集成(目前国际上的技术水平) 分子育种(将分子生物学技术手段应用于育种中,通常包括分子标记辅助育种、转基因育种和分子模块育种等)
4.0
能够实现任何已知等位基因的最优组合,一些作物会很快实现 正在向设计育种或智能化育种(将基因编辑、生物育种、人工智能等技术融合发展,实现性状的精准定向改良)发展
[1] 赖小琴.做强农业“芯片”端稳手中饭碗. 西江日报, 2022-04-26(2).
[2] 方玉, 张琴, 李潜龙, 等. 有中国特色的水稻设计育种体系建设探究. 中国种业, 2020(9):5-8.
[3] 何烈勋. 对育种工作的一点意见. 中国农业科学, 1951(5):40-41.
[4] 万建民. 作物分子设计育种. 作物学报, 2006, 32(3):455-462.
[5] 庄巧生. 我国作物育种方法的新进展. 中国农业科学, 1961(3):51-53.
[6] 王彦霞, 王海波. 作物育种技术的发展、进步及存在的问题. 河北农业科学, 2001, 5(2):62-72.
[7] 吴京华, 廖伏明. 中国水稻杂种优势利用的成就、进展与前景. 世界农业, 1999(8):3.
[8] 李新海, 谷晓峰, 马有志, 等. 农作物基因设计育种发展现状与展望. 中国农业科技导报, 2020, 22(8):1-4.
doi: 10.13304/j.nykjdb.2020.0636
[9] 顾铭洪, 刘巧泉. 作物分子设计育种及其发展前景分析. 扬州大学学报(农业与生命科学版), 2009, 30(1):64-67.
[10] 余泓, 王冰, 陈明江, 等. 水稻分子设计育种发展与展望. 生命科学, 2018, 30(10):1032-1037.
[11] 景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论. 中国科学:生命科学, 2021, 51(10):1356-1365.
[12] Clark D E, Westhead D R. Evolutionary algorithms in computer- aided molecular design. Journal of Computer-Aided Molecular Design, 1996, 10(4):337-358.
pmid: 8877705
[13] Peleman J D, van der Voort J R. Breeding by design. Trends Plant Science, 2003, 8(7):330-334.
doi: 10.1016/S1360-1385(03)00134-1
[14] Edwards Buckler S R W G J. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 2018, 52(1):421-444.
doi: 10.1146/genet.2018.52.issue-1
[15] 陈绍江. 品种设计与商业化育种. 种子, 2001(6):39-41.
[16] Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565):79-92.
doi: 10.1126/science.1068037
[17] Feng Q, Zhang Y J, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420(6913):316-320.
doi: 10.1038/nature01183
[18] 洪孟民. 《水稻基因设计育种》一书读后. 中国水稻科学, 2011, 25(1):30.
[19] 作物设计. 分子植物育种, 2004(4):601.
[20] 钱前. 水稻基因设计育种. 北京: 科学出版社, 2007.
[21] 薛勇彪, 段子渊, 种康, 等. 面向未来的新一代生物育种技术——分子模块设计育种. 中国科学院院刊, 2013, 28(3):308-314.
[22] 余泓, 王冰, 陈明江, 等. 水稻分子设计育种发展与展望. 生命科学, 2018, 30(10):1032-1037.
[23] 陈凡, 钱前, 王台, 等. 2017年中国植物科学若干领域重要研究进展. 植物学报, 2018, 53(4):391-440.
doi: 10.11983/CBB18177
[24] 樊龙江, 王卫娣, 王斌, 等. 作物育种相关数据及大数据技术育种利用. 浙江大学学报(农业与生命科学版), 2016, 42(1):30-39.
[25] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019, 41(8):754-760.
[26] Wei X, Qiu J, Yong K C, et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53(2):243-253.
doi: 10.1038/s41588-020-00769-9 pmid: 33526925
[27] A Chinese renaissance. Nature Plants, 2017, 3(2):17006.
doi: 10.1038/nplants.2017.6
[28] 丛靖宇, 王瑞刚, 李国婧. 新农科背景下植物分子设计育种的教学与实践. 内蒙古农业大学学报(社会科学版), 2022, 24 (5):22-27.
[29] 邓兴旺, 王海洋, 唐晓艳, 等. 杂交水稻育种将迎来新时代. 中国科学:生命科学, 2013, 43(10):864-868.
[30] 张燕, 王春, 王克剑. 人工创制植物无融合生殖的研究进展. 科学通报, 2020, 65(27):2999-3007.
[31] Lin Z C, Eaves D J, Sanchezmoran E, et al. The Papaver rhoeas S determinants confer self-incompatibility to Arabidopsis thaliana in planta. Science, 2015, 350(6261):684-687.
doi: 10.1126/science.aad2983
[32] 杨长青, 王凌健, 毛颖波, 等. 植物转基因技术的诞生和发展. 生命科学, 2011, 23(2):140-150.
[33] 汪海, 赖锦盛, 王海洋, 等. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制. 中国农业科技导报, 2022, 24(6):1-8.
doi: 10.13304/j.nykjdb.2022.0391
[34] 侯青青, 司丽珍, 黄学辉, 等. 水稻复杂性状研究的新途径:水稻重要农艺性状全基因组关联分析. 生命科学, 2016, 28(10):1250-1257.
[35] 尹志欣, 袁立科, 李振兴. 高科技企业全球创新布局及模式选择——以华为公司为例. 中国科技论坛, 2017(10):72-79.
[36] 侯惠勤.中国马克思主义与当代(2021年版). 北京: 高等教育出版社, 2021:177.
[1] Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171.
[2] Li Hongyan, Yao Xiaohua, Yao Youhua, Li Xin, Wu Kunlun. Advances in Genetic and Regulatory Mechanisms of Blue Grain Traits in Wheat Crops [J]. Crops, 2024, 40(2): 9-14.
[3] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[4] Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103.
[5] Bian Xiaomeng, Li Huafeng, Chen Yanbin. Overview of the Funding and Implementation for Miscellaneous Grains in “Economic Crops” Special-Purpose Project of the National Key R & D Program during the 13th Five-Year Plan [J]. Crops, 2023, 39(4): 1-6.
[6] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[7] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[8] Meng Yaxuan, Yao Xuhang, Sun Yingqi, Zhao Xinyue, Wang Fengxia, Weng Qiaoyun, Liu Yinghui. Identification and Bioinformatics Analysis of DGAT Gene Family in Cereal Crops [J]. Crops, 2023, 39(1): 20-29.
[9] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[10] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[11] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[12] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[13] Rong Kewei, Liu Bojuan, Lu Yuelei, Chen Yong, Luo Ping, Zhao Kang, Hao Zhuanfang, Gao Wenwei. Genetic Characteristics of MAGIC Population and Its Application in Crop Stress Tolerance [J]. Crops, 2022, 38(3): 9-19.
[14] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[15] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!