Crops ›› 2024, Vol. 40 ›› Issue (1): 193-203.doi: 10.16035/j.issn.1001-7283.2024.01.026

;

Previous Articles     Next Articles

Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice

Wang Xiaolei(), Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen(), Guo Liying()   

  1. Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-10-03 Revised:2023-10-12 Online:2024-02-15 Published:2024-02-20
  • Contact: Shao Xiwen,Guo Liying E-mail:17843102041@163.com;shaoxiwen@126.com;guoliying0621@163.com

Abstract:

Rice varieties Changbai 9 and Jinongda 667 were used as the test materials, and four treatments of black soil (CK), light saline (LS), moderate saline (MS) and severe saline (SS) were set up by potting method. The dry matter, leaf area, yield, leaf chlorophyll content, gas exchange parameters and chlorophyll fluorescence parameters of rice were measured to investigate the response mechanisms of photosynthetic physiology of rice under different levels of soda salinity stress. The results showed that rice leaf area, chlorophyll content, net photosynthetic rate (Pn) and stomatal conductance (Gs), dry matter and yield in photosynthetic gas exchange parameters decreased significantly; and intercellular CO2 concentration (Ci) increased significantly with increasing salinity. Chlorophyll fluorescence kinetic curves of WK at point K and VJ at point J, and initial reduction rate of QA (Mo) were significantly increased, performance index of rice leaves (PIABS) was significantly decreased, quantum yield and efficiency (φPo, φRo, ψEo) showed a decreasing trend with the increasing salinity, and heat dissipation ratio (φDo) showed an increasing trend. Compared with CK, the yield of Changbai 9 under soda salinity stress decreased on average by 16.85% to 48.85% in two years, and by 17.00% to 53.10% in Jinongda 667. The yield components of rice were significantly reduced in seed-setting rate, effective panicle number and grains number per panicle.

Key words: Rice, Soda and saline-alkali stress, Photosynthesis, Photosystem II, Chlorophyll fluorescence

Fig.1

Dynamic changes of the dry matter accumulation of rice under different soda and saline-alkali stress BS: booting stage, HS: heading stage, FS: filling stage, PMS: physiological maturity stage, FMS: full maturity stage. Different lowercase letters indicate significant differences at P < 0.05 level. The same below."

Table 1

Effects of soda and saline-alkali stress on rice yield and its components"

年份
Year
品种
Variety
处理
Treatment
有效穗数(个/穴)
Effective panicle
number (piece/hill)
穗粒数
Grains number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield (g/pot)
2020 长白9 CK 18.33±1.03a 76.75±12.49a 93.62±1.43a 28.19±3.83a 109.19±5.32a
LS 16.83±1.72ab 71.93±3.50ab 91.16±1.04ab 28.56±1.96a 93.98±4.73b
MS 15.33±1.03b 62.41±8.48bc 88.03±3.44b 28.43±2.62a 71.46±10.28c
SS 12.50±1.64c 61.19±4.86c 84.20±3.96c 27.95±2.16a 53.48±4.99d
吉农大667 CK 16.00±1.41a 117.07±5.17a 89.89±1.70a 21.87±1.15a 110.01±5.78a
LS 15.00±1.41a 109.48±7.26ab 86.12±2.38ab 22.40±0.52a 94.70±7.31b
MS 11.50±1.05b 106.87±7.57b 84.00±4.32bc 22.35±1.80a 68.72±4.98c
SS 9.17±0.75c 103.88±5.59b 79.87±7.61c 22.17±1.79a 50.24±4.73d
2021 长白9 CK 19.00±1.67a 78.79±3.78a 94.12±0.43a 27.66±0.46a 116.57±6.75a
LS 18.50±1.38a 66.41±3.32b 93.95±1.16a 27.11±1.70a 93.49±4.15b
MS 16.67±1.03b 62.40±4.23bc 91.28±1.84a 26.71±0.71a 75.85±3.94c
SS 14.83±1.72c 61.02±2.00c 83.02±6.37b 27.73±1.50a 62.08±5.66d
吉农大667 CK 17.50±1.38a 121.99±7.14a 88.56±5.38a 21.79±0.27a 123.02±6.44a
LS 15.67±1.21b 116.05±7.34ab 82.49±2.74b 21.95±1.10a 98.60±9.23b
MS 12.17±0.75c 109.27±4.69bc 81.74±2.76b 22.20±0.73a 72.19±3.34c
SS 10.67±1.37d 103.50±7.66c 79.07±3.72b 22.75±1.17a 59.17±5.74d

Fig.2

Dynamic changes of rice leaf area under soda and saline-alkali stress"

Table 2

Effects of soda and saline-alkali stress on chlorophyll contents and gas exchange parameters of rice leaves (Changbai 9)"

年份
Year
时期
Stage
处理
Treatment
叶绿素含量Chlorophyll content (mg/g) 叶绿素a/b
Chl a/b
Pn
[μmol/(m2·s)]
Gs
[μmol/(m2·s)]
Ci
(μL/L)
叶绿素a Chl a 叶绿素b Chl b
2020 孕穗期 CK 1.05a 0.18a 5.78a 22.08a 1068.63a 316.61c
LS 0.95ab 0.16ab 6.01ab 20.18b 1045.28a 332.40b
MS 0.90b 0.12b 7.34b 15.45c 996.52a 338.85a
SS 0.82b 0.08c 10.42b 10.81d 952.12a 343.44a
抽穗期 CK 2.52a 0.24a 10.59b 36.11a 1495.16a 303.55c
LS 2.38a 0.21ab 11.28ab 26.49b 1242.82b 307.40bc
MS 1.80b 0.15bc 12.28a 24.00b 1069.34b 310.98b
SS 1.48c 0.12c 12.09a 18.94c 1025.03b 317.62a
灌浆期 CK 1.36a 0.21a 6.42a 17.63a 950.50a 329.13c
LS 1.23b 0.18a 6.77a 15.36ab 898.91ab 335.33bc
MS 1.05c 0.15b 7.16a 12.95bc 795.20b 339.79ab
SS 0.91d 0.12c 7.28a 9.09c 675.73c 346.49a
生理成熟期 CK 0.37a 0.10a 3.62a 4.22a 209.71a 352.33c
LS 0.37a 0.08b 4.51ab 3.48a 178.06b 358.31bc
MS 0.31a 0.05c 6.74ab 1.99b 156.75b 366.47ab
SS 0.21b 0.03d 7.71b 0.90c 118.92c 376.23a
2021 孕穗期 CK 1.73a 0.32a 5.78b 28.12a 1168.10a 304.33c
LS 1.49b 0.27b 6.48b 23.10b 1056.73ab 311.41bc
MS 1.43c 0.26b 7.39ab 20.65c 994.57bc 316.21ab
SS 1.37d 0.22c 10.70a 15.99d 864.05c 323.60a
抽穗期 CK 2.86a 0.42a 10.66b 35.88a 1020.86a 313.89d
LS 2.74ab 0.40ab 12.23a 29.73b 1483.40a 292.40c
MS 2.46b 0.33b 12.41a 24.14c 1443.54b 298.17b
SS 1.98c 0.25c 12.45a 21.71d 1141.48b 305.70a
灌浆期 CK 1.63a 0.23a 6.43a 18.87a 1063.61a 313.53b
LS 1.59a 0.22a 6.78a 14.80b 1283.01a 302.45ab
MS 1.45b 0.18b 7.25a 17.48b 924.08a 331.73a
SS 1.29c 0.15b 7.30a 14.80c 903.63a 337.04a
生理成熟期 CK 0.43a 0.06a 3.67b 12.70a 832.85a 342.35b
LS 0.36b 0.04a 4.52ab 9.76b 733.04b 346.11ab
MS 0.28c 0.03b 6.75ab 13.68b 848.40c 339.30a
SS 0.13d 0.02b 8.97a 3.60b 181.20c 341.76a

Table 3

Effects of soda and saline-alkali stress on chlorophyll content and gas exchange parameters of rice leaves (Jinongda 667)"

年份
Year
时期
Stage
处理
Treatment
叶绿素含量Chlorophyll content (mg/g) 叶绿素a/b
Chl a/b
Pn
[μmol/(m2·s)]
Gs
[μmol/(m2·s)]
Ci
(μL/L)
叶绿素a Chl a 叶绿素b Chl b
2020 孕穗期 CK 1.28a 0.18a 7.14b 28.98a 1103.65a 315.70c
LS 1.12b 0.14ab 7.76b 26.39b 1005.60a 322.14c
MS 1.04c 0.12bc 8.94ab 21.59c 954.26a 332.24b
SS 0.96d 0.10c 9.70a 14.91d 693.86b 340.28a
抽穗期 CK 2.51a 0.25a 10.10b 37.97a 1485.48a 290.68c
LS 2.39a 0.22a 10.70b 27.83b 1208.66b 302.54b
MS 1.91b 0.18b 10.70b 22.18c 1060.08bc 308.48b
SS 1.46c 0.12c 12.40a 21.80c 908.56c 333.22a
灌浆期 CK 1.33a 0.27a 4.91b 18.13a 928.69a 314.81b
LS 1.25a 0.24a 5.15b 13.97b 674.51b 318.06b
MS 1.05b 0.16b 6.70ab 11.81b 641.73b 337.50a
SS 0.91b 0.11b 7.79a 8.85c 539.54c 346.47a
生理成熟期 CK 0.53a 0.09a 5.85b 3.53a 150.99a 353.89b
LS 0.37b 0.06b 6.58ab 3.21a 124.4ab 354.85b
MS 0.33b 0.05b 6.69ab 1.94b 102.04b 381.79a
SS 0.21c 0.02c 8.77b 1.03c 99.46b 392.16a
2021 孕穗期 CK 1.60a 0.28a 5.81b 28.69a 1108.81a 300.56c
LS 1.48b 0.25ab 5.94b 25.58b 1032.43a 304.56bc
MS 1.38c 0.21bc 6.53ab 22.47c 1015.87a 313.37ab
SS 1.33c 0.17c 7.71a 17.17d 804.05b 320.54a
抽穗期 CK 2.67a 0.50a 5.35b 35.20a 1517.55a 286.38d
LS 2.47b 0.45ab 5.54b 28.87b 1331.54a 295.60c
MS 2.00c 0.35b 5.64b 22.41c 1055.36b 302.42b
SS 1.85d 0.24c 7.73a 18.49d 915.88b 311.68a
灌浆期 CK 1.48a 0.19a 7.98b 17.03a 793.77a 325.52d
LS 1.08b 0.09b 11.40ab 14.21b 732.04a 332.50c
MS 0.97c 0.09b 10.30ab 11.10c 599.33b 340.06b
SS 0.93c 0.07b 14.04a 9.00d 561.81b 345.35a
生理成熟期 CK 0.44a 0.07a 6.47a 3.59a 129.63a 332.53c
LS 0.32b 0.06ab 5.30a 2.63ab 109.88a 341.51b
MS 0.31b 0.06ab 5.49a 1.62bc 99.89a 346.74ab
SS 0.30b 0.05b 6.11a 0.81c 90.71a 354.34a

Fig.3

Effects of soda and saline-alkali stress on OJIP normalization curve of rice leaves (2021)"

Fig.4

Effects of soda and saline-alkali stress on the initial slope (Mo) of transient fluorescence (2021)"

Fig.5

Effects of soda and saline-alkali stress on the performance indexes of rice donor/acceptor side (2021)"

Fig.6

Effects of soda and saline-alkali stress on rice energy allocation ratios (2021)"

Fig.7

Effects of soda and saline-alkali stress on rice leaf PIABS (2021)"

[1] Zhao W, Zhou Q, Tian Z Z, et al. Apply biochar to ameliorate soda saline-alkali land,improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment, 2020, 722:137428.
doi: 10.1016/j.scitotenv.2020.137428
[2] Guo J X, Lu X Y, Tao Y F. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Frontiers in Plant Science, 2022, 13:871387.
doi: 10.3389/fpls.2022.871387
[3] 刘淼, 梁正伟. 低氮高密增微肥对苏打盐碱地水稻产量和氮肥利用率的影响. 土壤与作物, 2021, 10(3):245-255.
[4] Singh D P, Sarkar R K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology, 2014, 41(7):727-736.
doi: 10.1071/FP13229 pmid: 32481027
[5] 邵玺文, 冉成, 金峰. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40(4):379-382.
[6] 杨娅坤, 赵飞, 刘建. 盐碱胁迫对水稻的影响及其相关机制的研究进展. 分子植物育种, 2022, 20(15):5150-5157.
[7] 黄伟东, 杨克军. 锌对玉米光合特性及抗氧化体系的影响. 中国糖料, 2020, 42(1):27-32.
[8] Yu J J, Chen S X, Zhao Q, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 2011, 10(9):3852-3870.
doi: 10.1021/pr101102p
[9] Shi C C, Yang F, Liu Z H, et al. Uniform water potential induced by salt, alkali, and drought stresses has different impacts on the seedling of Hordeum jubatum: from growth, photosynthesis, and chlorophyll fluorescence. Frontiers in Plant Science, 2021, 12:733236.
doi: 10.3389/fpls.2021.733236
[10] Kalajli M, Govindjee, Bosa K. et al. Effects of salt stress on Photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 2011, 73:64-72.
doi: 10.1016/j.envexpbot.2010.10.009
[11] 孙璐, 周宇飞, 李丰先. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16):3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
[12] 鲁倩君, 陈丽靓, 马媛媛. 盐碱胁迫对不同葡萄砧木光合及叶绿素荧光特性的影响. 果树学报, 2022, 39(5):773-783.
[13] Sun J, Xie D W, Zhang E Y. QTL mapping of photosynthetic- related traits in rice under salt and alkali stresses. Euphytica, 2019, 215(9):147.
doi: 10.1007/s10681-019-2470-x
[14] 杨洋. 不同程度复合盐碱胁迫对油菜苗期生理生化特性的影响. 石河子:石河子大学, 2020.
[15] 姚晓云, 蓝海军, 邓伟. 水稻淡白叶突变体的叶绿素含量测定及农艺性状比较分析. 江西农业学报, 2020, 32(12):12-15.
[16] 魏晓东, 张亚东, 宋雪梅. 超级稻品种南粳5718高产的光合生理特性研究. 作物学报, 2022, 48(11):2879-2890.
doi: 10.3724/SP.J.1006.2022.12078
[17] 李耕, 张善平, 刘鹏. 镉对玉米叶片光系统活性的影响. 中国农业科学, 2011, 44(15):3118-3126.
doi: 10.3864/j.issn.0578-1752.2011.15.006
[18] 董贞芬. 低温胁迫下番茄幼苗叶绿素荧光成像的分析及研究. 沈阳:沈阳农业大学, 2019.
[19] Salim A M, Noreen S, Mahmood S, et al. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University- Science, 2021, 33(1):101239.
doi: 10.1016/j.jksus.2020.101239
[20] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3):225-234.
[21] 杜琪, 王宁, 赵新华. 低钾胁迫对玉米苗期光合特性和光系统Ⅱ性能的影响. 核农学报, 2019, 33(3):592-599.
doi: 10.11869/j.issn.100-8551.2019.03.0592
[22] 周黄磊, 黄升谋. 库源关系对水稻叶绿素含量及叶绿素a/b值的影响. 绿色科技, 2017(24):147-149.
[23] 杨利云. 不同光质对烟草生长发育、光合特性及多酚代谢的影响. 昆明:云南师范大学, 2014.
[24] 刘建新, 王金成, 王瑞娟. 盐、碱胁迫对燕麦幼苗光合作用的影响. 干旱地区农业研究, 2015, 33(6):155-160.
[25] Liang X L, Fang S M, Ji W B, et al. The positive effects of silicon on rice seedlings under saline-alkali mixed stress. Communications in Soil Science and Plant Analysis, 2015, 46 (17):2127-2138.
doi: 10.1080/00103624.2015.1059848
[26] 赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响. 作物杂志, 2020(1):98-102.
[27] 杨婷, 谢志霞, 喻琼. 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 2014, 22(9):1074-1078.
[28] Ni M, Ni M, Chao H, et al. Strigolactones improve plant growth,photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 2017, 8:167.
[29] Jiang D, Lu B, Liu L B, et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biology, 2021, 21(1):331.
doi: 10.1186/s12870-021-03082-7 pmid: 34246235
[30] Zhao C, Niu J, Hafiz A K.Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression. Environmental Science, 2021, 8(9):2731-2748.
[31] 王鑫. 盐胁迫下高粱新生叶片结构和光合特性的系统调控研究. 泰安:山东农业大学, 2010.
[32] 孙文君, 江晓慧, 付媛媛, 等. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响. 灌溉排水学报, 2021, 40(7):23-28.
[33] 赵伟, 甄天悦, 张子山, 等. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020, 46(2):249-258.
[34] 李鹏民, 高辉远, Reto J S. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566.
[35] 原佳乐, 马超, 冯雅岚. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54 (6):1119-1129.
[36] 李磊, 李向义, 林丽莎. 两种生境条件下6种牧草叶绿素含量及荧光参数的比较. 植物生态学报, 2011, 35(6):672-680.
doi: 10.3724/SP.J.1258.2011.00672
[37] Gao D P, Ran C, Zhang Y H, et al. Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiology and Biochemistry, 2022, 185:115-122.
[38] 任廷虎, 李宗尧, 杜斌. 有机肥施用及合理密植提高黄淮海地区夏大豆光系统性能与籽粒产量. 植物营养与肥料学报, 2021, 27(8):1361-1375.
[39] Metha P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48(1):16-20.
doi: 10.1016/j.plaphy.2009.10.006 pmid: 19932973
[40] 修妤, 梁晓艳, 石瑞常. 混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响. 江苏农业科学, 2020, 48(4):89-94.
[41] Shivani S, Kaur N, Kumar P. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Analytical Biochemistry, 2018, 550:99-108.
doi: S0003-2697(18)30198-2 pmid: 29704477
[42] 周婵婵, 王术, 黄元财. 不同水稻品种产量和品质对盐碱胁迫的响应. 种子, 2017, 36(11):29-33.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[3] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[4] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[5] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[6] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[7] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[8] Chen Jinping, Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü. Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.) [J]. Crops, 2023, 39(6): 160-166.
[9] Gao Zuoli, Jiang Shuaichen, Liu Yujia, Xu Zhihui, Liu Haifeng. Selection of Colored Rice Varieties Suitable for Planting in Yanbian Region [J]. Crops, 2023, 39(6): 62-68.
[10] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[11] Fang Wenying, Zhu Defeng, Huai Yan, Chen Jiaqi, Chen Huizhe, Wang Yaliang. Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population [J]. Crops, 2023, 39(5): 124-130.
[12] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[13] Hu Rui, Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua. Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization [J]. Crops, 2023, 39(5): 179-186.
[14] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[15] Zhai Jing, Yang Shengming, Wang Yuzhen, Shi Linlin. Effects of Multi-Year Organic Fertilizer Application on Starch Physicochemical Properties of Mid-Mature Soft Japonica Rice [J]. Crops, 2023, 39(5): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!