Crops ›› 2024, Vol. 40 ›› Issue (1): 8-15.doi: 10.16035/j.issn.1001-7283.2024.01.002

;

Previous Articles     Next Articles

Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature

Xie Keran(), Gao Ti, Cui Kehui()   

  1. National Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-11-10 Revised:2023-01-16 Online:2024-02-15 Published:2024-02-20
  • Contact: Cui Kehui E-mail:18853889289@163.com;cuikehui@mail.hzau.edu.cn

Abstract:

The extreme high temperature weather caused by global warming have serious effects rice production. It is of great significance to investigate the mechanism of high temperature injury and the cultivation regulation measures to clarify rice high temperature injury. This paper reviewed the effects and mechanisms of high temperatures on the rice yield formation at the panicle initiation stage, heading stage, and grain filling stage in recent years, including the physiological and biochemical processes such as pollen development, spikelet fertility and grain filling, production and elimination of active oxygen, sugar metabolism, hormone changes, etc. Potassium is involved in the regulation of multiple physiological processes of plants. Therefore, this paper discusses the possible role of potassium fertilizer in alleviating rice high temperature stress from the aspects of the regulation of “source-flow-sink”, pollen germination and pollen tube elongation, and the steady state of active oxygen and hormones. We also summarizes the regulation of different cultivation measures on rice yield formation under high temperature. Combined with the existing research, the prospect of optimizing potassium fertilizer management to improve the heat resistance of rice were prospected.

Key words: High temperature stress, Rice, Yield formation, Cultivation measures, Potassium fertilizer

Table 1

Effects of potassium treatment on sugar metabolism of different plants"

植物
Plant
钾肥处理结果
Results of potassium treatment
参考文献
Reference
大豆
Soybean
施钾处理显著增加了大豆开花后籽粒蔗糖浓度和蔗糖磷酸合成酶的表达。 [64]
小麦
Wheat
外源钾提高了高温胁迫下小麦叶片中叶绿素含量,缓解了热胁迫下合成甘氨酸甜菜碱的碳水化合物供应不足。 [57]
水稻
Rice
施钾增加了非结构性碳水化合物从茎鞘向籽粒的转移,从而提高了水稻抗纹枯病能力。 [47]
叶面喷施KH2PO4能提高高温下水稻叶片中可溶性糖的含量。 [65]
甜叶菊
Stevia
叶片中可溶性糖含量、蔗糖磷酸合成酶、酸性和中性转化酶的活性与施钾量呈显著正相关。 [63]

Table 2

Effects of potassium on hormone levels of different crops"

作物
Crop
钾肥处理结果
Results of potassium treatment
参考文献
Reference
玉米
Maize
KI能刺激IAA诱导的玉米胚芽鞘伸长,增强IAA诱导的玉米胚芽鞘片段的乙烯生物合成。 [78]
番茄
Tomato
施钾处理下ABA和乙烯的浓度显著低于缺钾处理,减少了盐胁迫伤害。 [79]
烟草
Tobacco
叶片和根中IAA浓度和与指示生长素分布及含量相关的DR5::GUS表达水平与钾含量呈正相关。 [80]
甘薯
Sweet
potato
施用钾肥增加了甘薯块根中玉米素含量,提升了初生形成层的活动能力,促进了不定根向块根的分化。 [81]
水稻
Rice
钾转运蛋白OsHAK5调节ATP依赖性生长素转运 [74]

Table 3

Effects of potassium treatment on antioxidant enzyme activities of different crops"

作物
Crop
钾肥处理结果
Results of potassium treatment
参考文献
Reference
小麦
Wheat
外源钾的施用提高了抽穗至灌浆期高温下小麦叶片中抗氧化酶的活性,抗氧化能力保持在高水平。 [82]
大豆
Soybean
施钾降低了大豆丙二醛含量和电解质渗漏率,提高了抗氧化酶活性,从而提高了耐盐性。 [83]
水稻
Rice
2.5%和5% KNO3、3%和3.5% SiO2预浸种能更有效地提高水稻幼苗的出苗率、幼苗生长、生理生化特性和抗氧化酶活性。 [84]
KH2PO4和SA处理可以减少高温下水稻ROS产生和脂质过氧化,提高渗透调节能力和抗氧化能力,促进高温胁迫下水稻的生长发育。 [65]

Table 4

Effects of exogenous growth regulators on spikelet fertility and seed-setting rate of rice and wheat under high temperature"

作物
Crop
高温处理
High temperature treatment
外源调节剂处理效果
Effects of exogenous regulator treatment
参考文献
Reference
小麦
Wheat
花前42 °C白天高温处理2 h
高温下花粉育性在10%以下,高温处理前喷洒400 mmol/L抗坏血酸后花粉育性为30%~ 40%。 [92]
水稻
Rice
幼穗分化期全天高温处理15 d
高温处理前和处理后第2天每株各喷施一次20 mL 60 mg/L 6-BA。高温下颖花育性为30%,施用6-BA后颖花育性为62%。 [17]
幼穗分化期夜间高温处理15 d

在移栽后30、35和40 d分别喷施生长调节剂混合液(含有1.4 mg/L抗坏血酸、6.9 mg/L生育酚、1.8 mg/L茉莉酸甲酯、4.0 mg/L油菜素内酯和0.55 mg/L三唑类)。高温下花粉育性为60%,混合液施用后花粉育性为78%。 [96]
花期40 °C白天高温处理2 h

高温处理前分别5~10 min喷洒1和10 μmol/L NAA。高温下耐热品种颖花育性为60%,喷施10 μmol/L NAA后颖花育性为68%。高温下热敏感品种颖花育性为33%,喷施10 μmol/L NAA后颖花育性为45%。 [22]
开花后高温连续处理12 d
高温处理当天和次日16:00至17:00喷洒外源亚精胺,提高了气孔导度和蒸腾速率,降低高温胁迫下水叶温,提高结实率和粒重。 [93]
抽穗后高温处理6 d

温度处理的第1天和第2天上午9:30-10:00喷施不同浓度的茉莉酸类化合物,高温胁迫下茉莉酸类化合物含量较高的光温敏核不育系与恢复系杂交后代,颖花育性和结实率高,产量高。 [94]
抽穗后高温处理7 d

开花期喷施不同浓度的油菜素类固醇,油菜素类固醇含量高的品系的雌蕊中1-氨基-环丙烷-1-羧酸和H2O2含量较低,CAT活性和抗坏血酸含量较高,受精率、结实率和籽粒产量高。 [95]
[39] Mohammed A R, Tarpley L. High night temperature and plant growth regulator effects on spikelet sterility,grain characteristics and yield of rice (Oryza sativa L.) plants. Canadian Journal of Plant Science, 2011, 91(2):283-291.
doi: 10.4141/CJPS10038
[40] Cao Z Z, Zhao Q, Pan G, et al. Comprehensive expression of various genes involved in storage protein synthesis in filling rice grain as affected by high temperature. Plant Growth Regulation, 2016, 81(3):477-488.
doi: 10.1007/s10725-016-0225-4
[41] Yao D P, Wu J, Luo Q H, et al. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. Food Chemistry, 2019, 310:125817.
doi: 10.1016/j.foodchem.2019.125817
[42] Hasanuzzaman M, Bhuyan M H M, Nahar K, et al. Potassium:a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018, 8(3):31.
doi: 10.3390/agronomy8030031
[43] Kumar P, Kumar T, Singh S, et al. Potassium: a key modulator for cell homeostasis. Journal of Biotechnology, 2020, 324:198-210.
doi: 10.1016/j.jbiotec.2020.10.018 pmid: 33080306
[44] Lana L G, Araújo L M D, Silva T F, et al. Interplay between gas otransmitters and potassium is a key factor during plant response to abiotic stress. Plant Physiology and Biochemistry, 2021, 169:322-332.
doi: 10.1016/j.plaphy.2021.11.023
[45] Sardans J, Penuelas J. Potassium control of plant functions: ecological and agricultural implications. Plants, 2021, 10(2):419.
doi: 10.3390/plants10020419
[46] Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2020, 156:64-77.
doi: S0981-9428(20)30424-1 pmid: 32906023
[1] IPCC.Climate Change 2021:The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press: Cambridge, UK, 2021.
[2] Peng S B, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27):9971-9975.
[47] Johnson R, Vishwakarma K, Hossen M S, et al. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 2022, 172:56-69.
doi: 10.1016/j.plaphy.2022.01.001 pmid: 35032888
[48] Zhang J L, Hou W F, Ren T, et al. Applying potassium fertilizer improves sheath rot disease tolerance and decreases grain yield loss in rice (Oryza sativa L.). Crop Protection, 2020, 139:105392.
doi: 10.1016/j.cropro.2020.105392
[49] Huang G J, Zhang Q Q, Wei X H, et al. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Frontiers in Plant Science, 2017, 8:945.
doi: 10.3389/fpls.2017.00945 pmid: 28634485
[50] Gautam H, Fatma M, Sehar Z, et al. Exogenously-sourced ethylene positively modulates photosynthesis, carbohydrate metabolism, and antioxidant defense to enhance heat tolerance in rice. International Journal of Molecular Sciences, 2022, 23(3):1031.
doi: 10.3390/ijms23031031
[3] Siebert S, Ewert F, Rezaei E E. Impact of heat stress on crop yield on the importance of considering canopy temperature. Environmental Research Letters, 2014, 9(4):412-440.
[4] Kumari S, Chhillar H, Chopra P, et al. Potassium: A track to develop salinity tolerant plants. Plant Physiology and Biochemistry, 2021, 167:1011-1023.
doi: 10.1016/j.plaphy.2021.09.031 pmid: 34598021
[5] Ul-Allah S, Ijaz M, Nawaz A, et al. Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants, 2020, 9(1):75.
doi: 10.3390/plants9010075
[6] Jagadish K S V, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7):1627-1635.
doi: 10.1093/jxb/erm003 pmid: 17431025
[7] Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: a review. Global Change Biology, 2014, 20(2):408-417.
doi: 10.1111/gcb.12389 pmid: 24038930
[8] Snider J L, Oosterhuis D M, Skulman B W, et al. Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 2009, 137(2):125-138.
doi: 10.1111/ppl.2009.137.issue-2
[9] Kaushal N, Awasthi R, Gupta K, et al. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 2013, 40(12):1334-1349.
doi: 10.1071/FP13082 pmid: 32481199
[10] Zhao Q, Zhou L J, Liu J C, et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Reports, 2018, 37(5):741-757.
doi: 10.1007/s00299-018-2264-y pmid: 29464319
[11] Zhao Q, Zhou L J, Liu J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 2018, 122:90-101.
doi: S0981-9428(17)30372-8 pmid: 29202329
[12] Wu C, Cui K H, Tang S, et al. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crop Research, 2020, 252:107795.
doi: 10.1016/j.fcr.2020.107795
[13] Hu Q Q, Wang W C, Lu Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 2021, 21(1):428.
doi: 10.1186/s12870-021-03209-w
[14] Jagadish S V K, Muthurajan R, Oane R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61 (1):143-156.
doi: 10.1093/jxb/erp289 pmid: 19858118
[15] Li X, Lawas L M F, Malo R, et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell and Environment, 2015, 38(10):2171-2192.
doi: 10.1111/pce.v38.10
[16] Coast O, Murdoch A J, Ellis R H. Resilience of rice (Oryza sativa L.)pollen germination and tube growth to temperature stress. Plant Cell and Environment, 2016, 39(1):26-37.
doi: 10.1111/pce.v39.1
[17] Wu C, Cui K H, Wang W C, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 2016, 6:34978.
doi: 10.1038/srep34978 pmid: 27713528
[18] Kumar N, Shankhdhar S C, Shankhdhar D. Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian Jouranl of Plant Physiology, 2016, 21(1):37-43.
[19] Raja M M, Vijayalakshmi G, Naik M L. Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 2019, 41(4):47.
doi: 10.1007/s11738-019-2835-8
[20] Wang Y L, Zhang Y K, Zhang Q, et al. Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance. PeerJ, 2019, 7:e7595.
doi: 10.7717/peerj.7595
[21] Wu C, Cui K H, Fahad S. Heat stress decreases rice grain weight: evidence and physiological mechanisms of heat effects prior to flowering. International Journal of Molecular Sciences, 2022, 23 (18):10922.
doi: 10.3390/ijms231810922
[22] Zhang C, Li G, Chen T. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11:14.
doi: 10.1186/s12284-018-0206-5 pmid: 29532187
[23] Wang Y L, Wang L, Zhou J X, et al. Research progress on heat stress of rice at flowering stage. Rice Science, 2019, 26(1):1-10.
doi: 10.1016/j.rsci.2018.06.009
[24] Wang W C, Cui K H, Hu Q Q, et al. Response of spiklet water status to high temperature and its relationship with heat tolerance in rice. The Crop Journal, 2020, 9(6):1344-1356.
doi: 10.1016/j.cj.2020.11.010
[25] Sato S, Peet M M, Thomas J F. Determining critical pre-and post- anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany, 2002, 53(371):1187-1195.
doi: 10.1093/jexbot/53.371.1187
[26] 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻花粉粒性状及花药显微结构的影响. 生态学报, 2008, 28(3):1089-1097.
[27] Matsui T, Omasa K. Rice (Oryza sativa L.)cultivars tolerant to high temperature at fowering: anther characteristics. Annals of Botany, 2002, 89(6):683-687.
doi: 10.1093/aob/mcf112
[28] Beauzamy L, Nakayama N, Boudaoud A. Flowers under pressure: ins and outs of turgor regulation in development. Annals of Botany, 2014, 114(7):1517-1533.
doi: 10.1093/aob/mcu187 pmid: 25288632
[29] Wei D H, Liu M J, Chen H. INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genetics, 2018, 14(10):e1007695.
doi: 10.1371/journal.pgen.1007695
[30] Muller F, Rieu I. Acclimation to high temperature during pollen development. Plant Reproduction, 2016, 29(1/2):107-118.
doi: 10.1007/s00497-016-0282-x
[31] Shi W J, Li X, Schmidt R C, et al. Pollen germination and in vivo fertilization in response to high temperature during flowering in hybrid and inbred rice. Plant Cell and Environment, 2018, 41(6):1287-1297.
doi: 10.1111/pce.v41.6
[32] Rieu I, Twell D, Firon N. Pollen development at high temperature: From acclimation to collapse. Plant Physiology, 2017, 173(4):1967-1976.
doi: 10.1104/pp.16.01644 pmid: 28246296
[33] Jiang N, Yu P H, Fu W M. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell and Environment, 2020, 43(5):1273-1287.
doi: 10.1111/pce.v43.5
[34] Shimoyanagi R, Abo M, Shiotsu F. Higher temperatures during grain filling affect grain chalkiness and rice nutrient contents. Agronomy, 2021, 11(7):1360.
doi: 10.3390/agronomy11071360
[35] Xu Y, Huang B. Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science, 2007, 132(2):185-192.
doi: 10.21273/JASHS.132.2.185
[36] 刘萍, 郭文善, 浦汉春, 等. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响. 中国农业科学, 2005, 38(12):2403-2407.
[37] Kim J, Shon J, Lee C K, et al. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crop Research, 2011, 122(3):207-213.
doi: 10.1016/j.fcr.2011.03.014
[38] 汤日圣, 郑建初, 陈留根, 等. 高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响. 植物生理与分子生物学学报, 2005, 31(6):657-662.
[51] Jordan-Meille L, Pellerin S. Leaf area establishment of a maize(Zea mays L.)field crop under potassium deficiency. Plant and Soil, 2004, 265(1/2):75-92.
doi: 10.1007/s11104-005-0695-z
[52] Battie-Laclau P, Laclau J P, Piccolo M D, et al. Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant and Soil, 2013, 371(1/2):19-35.
doi: 10.1007/s11104-013-1663-7
[53] Andrés Z, Pérez-Hormaeche J, Leidi E O, et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17):1806-1814.
[54] Azedo-Silva J, Osorio J, Fonseca F, et al. Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus. Functional Plant Biology, 2004, 31(6):611-621.
doi: 10.1071/FP04018 pmid: 32688933
[55] Li Y, Gao Y X, Xu X M, et al. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. Journal of Experimental Botany, 2009, 60(8):2351-2360.
doi: 10.1093/jxb/erp127
[56] Sarwar M, Saleem M F, Ullah N, et al. Role of mineral nutrition in alleviation of heat stress in cotton plants grown in glasshouse and field conditions. Scientific Reports, 2019, 9:1-17.
doi: 10.1038/s41598-018-37186-2
[57] Shahid M, Saleem M F, Saleem A, et al. Exogenous potassium- instigated biochemical regulations confer terminal heat tolerance in wheat. Journal of Soil Science and Plant Nutrition, 2019, 19(1):137-147.
doi: 10.1007/s42729-019-00020-3
[58] Shahid M, Saleem M F, Saleem A, et al. Foliar potassium- induced regulations in glycine betaine and malondialdehyde were associated with grain yield of heat-stressed bread wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition, 2020, 20(4):1785-1798.
doi: 10.1007/s42729-020-00250-w
[59] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 2008, 133(4):670-681.
doi: 10.1111/ppl.2008.133.issue-4
[60] Gerardeaux E, Jordan-Meille L, Constantin J, et al. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum. Environmental and Experimental Botany, 2010, 67(3):451-459.
doi: 10.1016/j.envexpbot.2009.09.008
[61] 沙建川, 陈倩, 王芬, 等. 钾水平对富士苹果果实膨大期13C同化物向果实转运的影响. 应用生态学报, 2020, 31(6):1859-1866.
[62] Hu W, Yang J S, Meng Y L, et al. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crop Research, 2015, 179:120-131.
doi: 10.1016/j.fcr.2015.04.017
[63] Sun Y M, Huang X L, Zhang T, et al. Potassium deficiency inhibits steviol glycosides synthesis by limiting leaf sugar metabolism in stevia (Stevia rebaudiana Bertoni) plants. Journal of Integrative Agriculture, 2021, 20(11):2932-2943.
doi: 10.1016/S2095-3119(20)63472-4
[64] Liu C K, Tu B J, Li Y S, et al. Potassium application affects key enzyme activities of sucrose metabolism during seed filling in vegetable soybean. Crop Science, 2017, 57(5):2707-2717.
doi: 10.2135/cropsci2016.08.0648
[65] Yang J, Duan L C, He H H, et al. Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. Journal of Plant Growth Regulation, 2021, 41(4):1532-1546.
doi: 10.1007/s00344-021-10399-y
[66] Heslopharrison J S, Heslopharrison Y, Reger B J. Anther-filament extension in lilium: potassium ion movement and some anatomical features. Annals of Botany, 1987, 59(5):505-515.
doi: 10.1093/oxfordjournals.aob.a087344
[67] Heslopharrison Y, Heslopharrison J S. Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Annals of Botany, 1996, 77(6):573-582.
doi: 10.1093/aob/77.6.573
[68] Liu L T, Zheng C H, Kuang B J, et al. Receptor-like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLoS Genetics, 2016, 12(7):e1006085.
doi: 10.1371/journal.pgen.1006085
[69] Jamil M, Kang J G, Rha E S, et al. General morphology and relation between potassium and pollen in Japanese angelica (Aralia elata L.). Pakiatan Journal of Botany, 2008, 40(2):487-493.
[70] Rehman S, Yoo N H, Park M R, et al. Confocal potassium imaging: Giving new insight into potassium concentrated at the aperture area of barley (Hordeum vulgare L.) pollen. Plant Science, 2005, 169(2):457-459.
doi: 10.1016/j.plantsci.2005.04.012
[71] Rehman S, Yun S J.Developmental regulation of K accumulation in pollen, anthers, and papillae: are anther dehiscence, papillae hydration, and pollen swelling leading to pollination and fertilization in barley (Hordeum vulgare L.) regulated by changes in K concentration?. Journal of Experimental Botany, 2006, 57 (6):1315-1321.
pmid: 16531463
[72] 房克凤, 张卿, 曹庆芹, 等. 青扦花粉萌发及花粉管生长过程中的钾离子流及BaCl2和TEA的影响. 电子显微学报, 2017, 36(5):498-504.
[73] Sakata T, Oshino T, Miura S, et al. Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8569-8574.
[74] Yang T, Feng H, Zhang S, et al. The potassium transporter OsHAK5 alters rice architecture via ATP-dependent transmembrane auxin fluxes. Plant Communications, 2020, 1(5):100052.
doi: 10.1016/j.xplc.2020.100052
[75] Zhang R, Wang N, Li S, et al. Gibberellin biosynthesis inhibitor mepiquat chloride enhances root K+ uptake by modulating plasma membrane H+- ATPase. Journal of Experimental Botany, 2021, 72(18):6659-6671.
doi: 10.1093/jxb/erab302
[76] Hughes A M, Zwack P J, Cobine P A, et al. Cytokinin-regulated targets of cytokinin response factor 6 are involved in potassium transport. Plant Direct, 2020, 4(12):e00291.
doi: 10.1002/pld3.v4.12
[77] Sehar Z, Iqbal N, Khan M I R, et al. Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt- stressed wheat (Triticum aestivum L.). Scientific Reports, 2021, 11(1):1-12.
doi: 10.1038/s41598-020-79139-8
[78] Hwang I Y, Chang S C, Lee Y N, et al. Stimulatory effects of potassium iodide on auxin action in the coleoptile segments of maize (Zea mays). Plant Growth Regulation, 2009, 57(1):1-5.
doi: 10.1007/s10725-008-9316-1
[79] Amjad M, Akhtar J, Anwar-ul-Haq M, et al. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Scientia Horticulturae, 2014, 172:109-116.
doi: 10.1016/j.scienta.2014.03.024
[80] Song W J, Liu S J, Meng L, et al. Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution. Plant and Soil, 2015, 396(1/2):163-173.
doi: 10.1007/s11104-015-2579-1
[81] 姜仲禹, 唐丽雪, 柳洪鹃, 等. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系. 作物学报, 2020, 46(11):1750-1759.
doi: 10.3724/SP.J.1006.2020.04097
[82] Shahid M, Nayak A K, Tripathi R, et al. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages. International Journal of Biometeorology, 2018, 62(8):1375-1387.
doi: 10.1007/s00484-018-1537-z pmid: 29644433
[83] Parveen, Anwar-Ul-Haq M, Aziz T, et al. Potassium induces carbohydrates accumulation by enhancing morpho-physiological and biochemical attributes in soybean under salinity. Archives of Agronomy and Soil Science, 2020, 67(7):946-959.
doi: 10.1080/03650340.2020.1769075
[84] Ali L G, Nulit R, Ibrahim M H, et al. Efficacy of KNO3, SiO2 and SA priming for improving emergence,seedling growth and antioxidant enzymes of rice (Oryza sativa L), under drought. Scientific Reports, 2021, 11(1):3864.
doi: 10.1038/s41598-021-83434-3
[85] 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展. 应用生态学报, 2020, 31(8):2817-2830.
doi: 10.13287/j.1001-9332.202008.027
[86] 张宏玉, 黄英金, 王德粕, 等. 水稻灌浆期耐热性近等基因系的选育研究. 江西农业大学学报, 2004, 26(6):847-853.
[87] 孟丽君, 马秀芳, 黎志康, 等. 粳稻超优1号背景回交导入系的耐热性筛选与评价. 作物学报, 2012, 38(11):1949-1959.
doi: 10.3724/SP.J.1006.2012.01949
[88] Ishimaru T, Hirabayashi H, Kuwagata T, et al. The early-morning flowering trait of rice reduces spikelet sterility under windy and elevated temperature conditions at anthesis. Plant Production Science, 2012, 15(1):19-22.
doi: 10.1626/pps.15.19
[89] Bheemanahalli R, Sathishraj R, Manoharan M, et al. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice?. Field Crops Research, 2017, 203:238-242.
doi: 10.1016/j.fcr.2016.11.011 pmid: 28260830
[90] Bahuguna R N, Jha J, Pal M. Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiologia Plantarum, 2015, 154(4):543-559.
doi: 10.1111/ppl.2015.154.issue-4
[91] 胡秋倩. 氮供应对水稻幼穗分化期高温下产量形成的影响及机理研究. 武汉:华中农业大学, 2021.
[92] Kumar R R, Goswami S, Gadpayle K A, et al. Ascorbic acid at pre-anthesis modulate the thermotolerance level of wheat (Triticum aestivum) pollen under heat stress. Journal of Plant Biochemistry and Biotechnology, 2014, 23(3):293-306.
doi: 10.1007/s13562-013-0214-x
[93] Tang S, Zhang H X, Li L, et al. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Functional Plant Biology, 2018, 45(9):911-921.
doi: 10.1071/FP17149 pmid: 32291055
[94] Yang J C, Fei K Q, Chen J. Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genie male sterile rice lines. Food and Energy Security, 2020, 9(4):e233.
doi: 10.1002/fes3.v9.4
[95] Chen J, Fei K Q, Zhang W Y, et al. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines. The Crop Journal, 2020, 9(1):109-119.
doi: 10.1016/j.cj.2020.07.001
[96] Fahad S, Hussain S, Saud S. Exogenously applied plant growth regulators affect heat-stressed rice pollens. Journal of Agronomy and Crop Science, 2016, 202(2):139-150.
doi: 10.1111/jac.2016.202.issue-2
[97] Zhang X X, Zhou Q, Wang X. Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany, 2016, 131:181-189.
doi: 10.1016/j.envexpbot.2016.08.002
[98] Shi W J, Lawas L M F, Raju B R, et al. Acquired thermo- tolerance and trans-generational heat stress response at flowering in rice. Journal of Agronomy Crop Science, 2016, 202(4):309-319.
doi: 10.1111/jac.2016.202.issue-4
[99] 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用. 作物学报, 2012, 38(1):107-120.
[100] Jagadish S V K, Muthurajan R, Rang Z W. Spikelet proteomic response to combined water deficit and heat stress in rice (Oryza sativa cv. N22). Rice, 2011, 4(1):1-11.
doi: 10.1007/s12284-011-9059-x
[101] Waraich E, Ahmad R, Halim A, et al. Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 2012, 12(2):221-244..
doi: 10.4067/S0718-95162012000200003
[102] 闫娜. 增施氮素穗肥对幼穗分化期高温下水稻产量的影响及生理机理研究. 武汉:华中农业大学, 2021.
[103] Xiong D L, Yu T Y, Ling X X.Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa L.) cultivars and two nitrogen treatments. Functional in Plant Biology, 2015, 42(4):347-356.
doi: 10.1071/FP14166
[104] 赵决建. 氮磷钾施用量及比例对水稻抗高温热害能力的影响. 土壤肥料, 2005(5):13-16.
[105] 吴晨阳, 姚仪敏, 邵平, 等. 外源硅减轻高温引起的杂交水稻结实降低. 中国水稻科学, 2014, 28(1):71-77.
[106] 刘奇华, 孙召文, 信彩云, 等. 孕穗期施硅对高温下扬花灌浆期水稻干物质转运及产量的影响. 核农学报, 2016, 30(9):1833-1839.
doi: 10.11869/j.issn.100-8551.2016.09.1833
[107] Ragel P, Raddatz N, Leidi E O, et al. Regulation of K+ nutrition in plants. Frontiers Plant Science, 2019, 10:281.
doi: 10.3389/fpls.2019.00281
[108] Ali A, Raddatz N, Pardo J M, et al. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. Physiologia Plantarum, 2021, 171(4):546-558.
doi: 10.1111/ppl.v171.4
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[3] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[4] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[5] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[6] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[7] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[8] Gao Zuoli, Jiang Shuaichen, Liu Yujia, Xu Zhihui, Liu Haifeng. Selection of Colored Rice Varieties Suitable for Planting in Yanbian Region [J]. Crops, 2023, 39(6): 62-68.
[9] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[10] Fang Wenying, Zhu Defeng, Huai Yan, Chen Jiaqi, Chen Huizhe, Wang Yaliang. Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population [J]. Crops, 2023, 39(5): 124-130.
[11] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[12] Hu Rui, Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua. Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization [J]. Crops, 2023, 39(5): 179-186.
[13] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[14] Zhai Jing, Yang Shengming, Wang Yuzhen, Shi Linlin. Effects of Multi-Year Organic Fertilizer Application on Starch Physicochemical Properties of Mid-Mature Soft Japonica Rice [J]. Crops, 2023, 39(5): 91-97.
[15] Zhang Jiao, Chen Pengjun, Chen Yan, Han Jijun, Cui Shiyou. Short-Term Changes of Soil Characteristics and Rice Yield of Reclaimed Rice in Tidal Flat Aquaculture Ponds [J]. Crops, 2023, 39(4): 118-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!