Crops ›› 2025, Vol. 41 ›› Issue (1): 202-207.doi: 10.16035/j.issn.1001-7283.2025.01.025

;

Previous Articles     Next Articles

Simultaneous Determination of Contents of Five Kinds of Soluble Sugars in Codonopsis pilosula during Dormancy by HPLC-ELSD Method

Tang Shunli(), Zhang Yanhong(), Du Tao, Chen Hui, He Chunyu, Dong Wanqi   

  1. Department of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
  • Received:2023-05-20 Revised:2023-07-25 Online:2025-02-15 Published:2025-02-12

Abstract:

A method was developed for the simultaneous determination of contents of five soluble sugars in different organs of Codonopsis pilosula (Franch.) Nannf. during natural dormancy by HPLC-ELSD for investigating the role of soluble sugars in the cold resistance. The suitable detection conditions for the five soluble sugars were: Analysis Column (4.6 mm×250 mm 5-Micron), acetonitrile:water (70:30) solution as the mobile phase, column temperature of 35 °C, flow rate of 1.0 mL/min; ELSD parameters: nebulization temperature of 50 °C, drift tube temperature of 110 °C, nitrogen flow rate of 2.2 mL/min, gain value of 1.0. During the natural dormancy of C.pilosula, trehalose was only detected in roots (pre-dormant) and buds (dormant), raffinose was only detected in pre-dormant roots; fructose and glucose were found in higher levels in the leaves in the early stage of dormancy, and sucrose was found in higher levels in the roots in the early stage of dormancy and the buds in the dormant period. The highest levels of all three types of sugars were found in the buds after dormancy was released. This study established an efficient HPLC-ELSD technical system for the simultaneous detection of five soluble sugars, and confirmed that trehalose and raffinose are the main soluble sugar components of C.pilosula for cold resistance. Trehalose is synthesized in the roots and further transported to the buds. Fructose, glucose and sucrose are soluble sugar components stored in the roots of C.pilosula, and are also the source of substances and energy for germination.

Key words: Codonopsis pilosula (Franch.) Nannf., Soluble sugar component, HPLC-ELSD, Dormancy, Stress physiology

Fig.1

Chromatogram of soluble sugar in different volume ratios of acetonitrile and water 1: Fructose; 2: Glucose; 3: Sucrose; 4: Trehalose; 5: Raffinose. The same below."

Fig.2

Chromatogram of soluble sugar at different drift tube temperatures"

Table 1

Regression equation, correlation coefficient and linearity range for the five soluble sugars"

组分Composition 回归方程Regression equation 相关系数Correlation coefficient 线性范围Linearity range (mg/mL)
果糖Fructose y=2055.4x-31.834 0.9998 0.016~10
葡萄糖Glucose y=2326.7x-5.2971 0.9998 0.016~10
蔗糖Sucrose y=2530.5x+120.21 0.9991 0.016~10
海藻糖Trehalose y=2623.6x-57.838 1.0000 0.016~10
棉子糖Raffinose y=2250.1x-256.03 0.9990 0.016~10

Fig.3

Chromatogram of standard and Codonopsis pilosula samples (a) Standard sample; (b) Predormancy root; (c) Predormancy stem; (d) Predormancy leaf; (e) Predormancy bud; (f) Dormant bud; (g) Bud after release from dormancy."

Fig.4

Contents of the five soluble sugars in each organ during the pre-dormant period Different lowercase letters show significant differences (P < 0.05), the same below."

Fig.5

Contents of five soluble sugars in buds in different dormancy periods"

[1] Reyes-Diaz M, Alberdi M, Piper F, et al. Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile. Tree Physiology, 2005, 25(11):1389-1398.
pmid: 16105806
[2] Benina M, Obata T, Mehterov N, et al. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 2013, 4:499.
[3] Ruan Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 2014, 65:33-67.
[4] 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用. 生物技术通报, 2022, 38(7):80-89.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1289
[5] 岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究. 北京: 中国农业科学院, 2015.
[6] 杨平, 李敏惠, 潘克俭, 等. 海藻糖的生物合成与分解途经及其生物学功能. 生命的化学, 2006, 26(3):233-236.
[7] Sharma M, Banday Z Z, Shukla B N, et al. Glucose-regulated HLP1 acts as a key molecule in governing thermomemory. Plant Physiology, 2019, 180(2):1081-1100.
doi: 10.1104/pp.18.01371 pmid: 30890662
[8] Saksena H B, Sharma M, Singh D, et al. The versatile role of glucose signalling in regulating growth, development and stress responses in plants. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4):687-699.
[9] Cisse A. 蔗糖影响水稻耐热性的作用机理研究. 北京: 中国农业科学院, 2020.
[10] 黄紫嫣, 王婧, 丁华, 等. 全自动还原糖测定仪法与斐林试剂滴定法对比研究. 湖北农业科学, 2019, 58(增2):398-402.
[11] 刘胜辉, 魏长宾, 孙光明, 等. 高效液相色谱法测定台农6号菠萝果实中的糖分. 食品科学, 2009, 30(12):162-164.
doi: 10.7506/spkx1002-6630-200912033
[12] 张淋洁, 王如伟, 何厚洪, 等. 高效液相色谱―蒸发光散射法测定铁皮石斛中单糖和双糖. 医药导报, 2013, 32(4):517-520.
[13] Gibson S I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiology, 2000, 124(4):1532-1539.
[14] 王静, 王睛, 向文胜. 色谱法在糖类化合物分析中的应用. 分析化学, 2001, 29(2):222-227.
[15] 施红林, 王保兴, 杨光宇, 等. 高效液相色谱法测定烟草中的糖. 分析化学, 2002, 30(3):384.
[16] 李忠, 杨光宇, 黄海涛, 等. 高效液相色谱法测定烟草料液中的糖、甘油和丙二醇. 分析化学, 2002, 30(6):687-689.
[17] 郑春英, 李庆勇, 祖元刚. HPLC-ELSD法测定甘草中单糖的含量. 东北林业大学学报, 2006, 34(2):109-110.
[18] 徐瑾, 张庆合, 张维冰, 等. 液相色谱荧光衍生法在糖类物质分析中的应用. 色谱, 2003, 21(2):115-120.
[19] 刘云惠. 高效液相色谱内标法分离和测定植物中的单糖. 色谱, 2000, 18(6):556-558.
[20] 魏泱, 丁明玉. 液相色谱/蒸发光散射测定转基因烟草提取液中的海藻糖. 色谱, 2001, 19(3):226-229.
[21] 罗进, 夏敏, 叶能胜, 等. HPLC-ELSD同时测定食品中5种糖含量. 食品科学, 2010, 31(8):226-229.
doi: 10.7506/spkx1002-6300-201008051
[22] 辛秀兰, 李小萍, 马越, 等. HPLC-ELSD法测定红树莓果实中水溶性糖含量. 吉林农业大学学报, 2009, 31(5):624-627.
[23] 程勇, 李庆廷, 李剑政, 等. Prevail糖柱-HPLC-ELSD法测定烟草中水溶性糖. 烟草科技, 2010(3):32-37.
[24] 宋晓晖, 谢凯, 李艳丽, 等. HPLC-ELSD法测定梨果实中不同种类可溶性糖含量. 南京农业大学学报, 2012, 35(2):87-91.
[25] 李威涛, 郭建斌, 喻博伦, 等. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47(2):368-375.
doi: 10.3724/SP.J.1006.2021.04110
[26] 曹进, 徐燕, 张永知, 等. 清开灵注射液HPLC/ELSD指纹图谱建立及质量相关性研究. 分析化学, 2004, 32(4):469-473.
[27] 詹园凤, 贺滉, 党选民. HPLC-ELSD法测定礼品西瓜果实可溶性糖的种类和含量. 南方农业学报, 2014, 45(11):2005- 2008.
[28] 黄熊娟. 钾氮肥施用量影响微胚乳超高油玉米产量及含油率机理的研究. 南宁:广西大学, 2006.
[29] Liu H L, Dai X Y, Xu Y Y, et al. Over-expression of OsUGE-1 altered raffinose level and tolerance to abiotic stress but not morphology in Arabidopsis. Journal of Plant Physiology, 2007, 164(10):1384-1390.
[30] Li Y, Lee K K, Walsh S, et al. Establishing glucose- and ABA- regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Research, 2006, 16(3):414-427.
[31] 王成君, 林建平, 岑沛霖. 高效液相色谱法快速检测海藻糖. 江南大学学报(自然科学版), 2005, 4(5):86-89.
[32] Dos Santos T B, Budzinski I G F, Marur C J, et al. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry, 2011, 49(4):441- 448.
doi: 10.1016/j.plaphy.2011.01.023 pmid: 21330144
[33] Yue C, Cao H L, Wang L, et al. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology, 2015, 88(6):591-608.
doi: 10.1007/s11103-015-0345-7 pmid: 26216393
[34] 张丹. 木薯海藻糖合成酶基因MeTPS1-3的克隆与功能分析. 海口:海南大学, 2013.
[1] Li Zhongnan,Zhang Xiaohui,Wang Yueren,Zhang Yanhui,Wu Shenghui,Xu Zhengxue,Li Guangfa. Inheritance of Seed Dormancy in F1 of DH Lines of Maize [J]. Crops, 2020, 36(1): 194-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .