Crops ›› 2025, Vol. 41 ›› Issue (1): 208-213.doi: 10.16035/j.issn.1001-7283.2025.01.026

;

Previous Articles     Next Articles

Effects of Drought Stress and Re-Watering on the Photosynthetic Phenotype and Leaf Characterization of New Sugarcane Varieties

An Dongsheng1(), Zhao Baoshan1, Liu Yang2, Yan Chengming1, Kong Ran1, Huang Wenfu3, Su Junbo1()   

  1. 1South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences / Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development / Guangdong Engineering Technology Research Center for Dryland and Water Saving Agriculture, Zhanjiang 524091, Guangdong, China
    2Jiaxing Vocational and Technical College, Jiaxing 314036, Zhejiang, China
    3Yangpu Nanhua Sugarcane Research Institute, Nanning 530022, Guangxi, China
  • Received:2023-05-26 Revised:2023-11-25 Online:2025-02-15 Published:2025-02-12

Abstract:

Seasonal drought is a main factor leading to sugarcane yield reduction, rapid and non-destructive phenotype assisted breeding methods holds significant potential in facilitating the early screening of drought resistant sugarcane varieties. The study measured and analyzed the fitting parameters of the functional leaf photosynthetic phenotype and plant leaf characteristics of three commercial varieties and ten new varieties response to drought stress and re-watering. The findings indicated notable variations in the response of different drought-tolerant sugarcane varieties to both drought and re-watering. All photosynthetic parameters of Regan 16117 were superior to ROC22 and Guiliu 05136 under drought stress, but the former photosynthetic potential (JP) was far lower than that of latter two after rehydration. Leaf rolling significantly reduced the leaf area exposed to direct irradiation, which was crucial to relieve photo damage induced by the limitation of photosynthetic electron transfer under drought. The varieties with more rolling leaves relatively possessed less expand and chlorosis leaves, achieved better recovery after rehydration. The drought stress index (δ) and the proportion of rolling leaves could reflect the drought stress tolerance of sugarcane, but photosynthetic capacity (PC) of calculated after rehydration considered to be more reliable for evaluating drought resistance of sugarcane varieties. Regan 1997 can be used as a new drought resistant variety.

Key words: Sugarcane, Drought resistance, Drought stress, Re-watering, Photosynthetic phenotype, Leaf characterization

Table 1

Chlorophyll fluorescence characteristics among different sugarcane varieties under drought stress and re-watering"

品种
Variety
干旱胁迫Drought stress 复水后Re-watering
αe PARsat Jmax ΦP δ αe PARsat Jmax ΦP δ
热甘1 Regan 1 0.034 961.6 16.5 0.081 0.839 0.313 969.6 128.3 0.732 0.919
热甘16239 Regan 16239 0.030 1422.7 21.1 0.092 0.718 0.299 973.7 114.9 0.710 0.972
热甘11559 Regan 11559 0.043 1038.7 24.6 0.099 0.650 0.299 941.8 128.6 0.717 0.911
热甘11713 Regan 11713 0.027 1204.3 14.7 0.058 0.547 0.309 969.2 121.9 0.715 0.915
热甘1462 Regan 1462 0.033 1180.2 12.4 0.077 0.968 0.355 1008.5 150.8 0.773 0.802
热甘1876 Regan 1876 0.028 1000.4 10.7 0.064 0.941 0.207 1364.2 167.0 0.612 0.581
热甘14291 Regan 14291 0.042 993.7 21.7 0.107 0.741 0.320 1112.5 152.6 0.713 0.758
热甘1339 Regan 1339 0.097 575.8 22.5 0.252 1.824 0.299 1302.5 170.1 0.777 0.738
热甘1997 Regan 1997 0.059 556.5 12.2 0.144 1.880 0.281 1256.0 182.4 0.737 0.628
热甘16117 Regan 16117 0.141 578.2 33.4 0.335 1.624 0.361 926.2 157.2 0.803 0.768
ROC16 0.025 1080.3 14.5 0.067 0.753 0.280 995.2 117.8 0.659 0.887
桂柳05136 Guiliu 05136 0.075 969.2 31.9 0.241 1.225 0.302 1296.4 165.0 0.756 0.702
ROC22 0.126 895.5 35.8 0.308 1.337 0.332 1225.3 169.8 0.768 0.691

Fig.1

Leaf characteristics of different sugarcane varieties under drought stress Different lowercase letters indicate significant difference at P < 0.05 level."

Table 2

Leaf characteristics of different sugarcane varieties after re-watering"

品种
Variety
平均叶长
Average leaf length (cm)
平均叶宽
Average leaf width (cm)
单株叶片数
Leaf number per plant
单株叶面积
Leaf area per plant (cm2)
热甘1 Regan 1 52.69±3.15de 3.47±0.38b 4.08±0.29fg 518.6±44.4f
热甘16239 Regan 16239 46.55±2.21f 2.51±0.14de 4.83±0.38def 409.5±4.1g
热甘11559 Regan 11559 48.01±3.43ef 2.95±0.17c 5.05±0.43bcde 657.2±51.1e
热甘11713 Regan 11713 61.07±2.84bc 2.73±0.13cde 4.67±0.14ef 668.6±35.7e
热甘1462 Regan 1462 42.74±2.16f 3.11±0.21bc 3.50±0.43g 376.1±83.6g
热甘1876 Regan 1876 60.97±3.26bc 3.38±0.22b 6.00±0.90bc 975.4±31.9d
热甘14291 Regan 14291 56.04±3.72cd 2.44±0.19e 5.08±0.38cde 558.0±39.1f
热甘1339 Regan 1339 57.60±2.54bcd 2.87±0.14cd 7.42±0.29a 1009.8±63.7d
热甘1997 Regan 1997 62.34±4.83b 4.00±0.22a 5.67±0.58bcd 1298.4±80.1a
热甘16117 Regan 16117 73.68±1.37a 2.99±0.14c 6.00±0.66bc 1039.7±71.7cd
ROC16 56.81±5.60bcd 2.92±0.29c 4.08±0.52fg 504.3±49.0f
桂柳05136 Guiliu 05136 74.30±2.37a 2.77±0.03cde 6.17±0.52b 1110.0±90.1bc
ROC22 69.94±2.00a 2.79±0.17cde 7.67±0.29a 1169.6±46.1b

Table 3

Photosynthetic capacity restoration among different sugarcane varieties after re-watering"

品种Variety LAI JP (×104) PC
热甘1 Regan 1 0.519 19.526 10.13
热甘16239 Regan 16239 0.409 18.703 7.66
热甘11559 Regan 11559 0.657 17.646 11.60
热甘11713 Regan 11713 0.669 19.215 12.85
热甘1462 Regan 1462 0.376 24.094 9.06
热甘1876 Regan 1876 0.975 25.473 24.85
热甘14291 Regan 14291 0.558 26.239 14.64
热甘1339 Regan 1339 1.010 31.814 32.13
热甘1997 Regan 1997 1.298 29.585 38.41
热甘16117 Regan 16117 1.040 20.651 21.47
ROC16 0.504 18.393 9.27
桂柳05136 Guiliu 05136 1.110 31.251 34.69
ROC22 1.170 31.544 36.89
[1] 王硕, 贾潇倩, 何璐, 等. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44.
doi: 10.11924/j.issn.1000-6850.casb2021-1042
[2] Zhang X B, Lei L, Lai J S, et al. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 2018, 18(1):68.
doi: 10.1186/s12870-018-1281-x pmid: 29685101
[3] Grzesiak M T, Filek W, Hura T, et al. Leaf optical properties during and after drought stress in triticale and maize genotypes differing in drought tolerance. Acta Physiologiae Plantarum, 2010, 32(3):433-442.
[4] Hameed M, Batool S, Naz N, et al. Leaf structural modifications for drought tolerance in some differentially adapted ecotypes of blue panic (Panicum antidotale Retz.). Acta Physiologiae Plantarum, 2012, 34(4):1479-1491.
[5] Zhou L, Yan P, Xiao M. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35:213-222.
[6] 汪毅, 郭海林, 宗俊勤, 等. 干旱胁迫及复水条件下2种抗旱性不同结缕草种质的生长和生理响应. 江苏农业科学, 2022, 50(9):159-168.
[7] 庄晔, 葛嘉雪, 汪孝国, 等. 干旱胁迫后复水对烤烟生长及其生理特性的影响. 中国烟草学报, 2022, 28(4):48-57.
[8] 韦丽君. 甘蔗干旱胁迫的形态结构及生理机制研究. 长沙:湖南农业大学, 2014.
[9] Khonghintaisong J, Songsri P, Toomsan B, et al. Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech, 2018, 20(4):396-406.
[10] Tripathi P, Chandra A, Prakash J. Changes in physio‑biochemical attributes and dry matter accumulation vis a vis analysis of genes during drought and stress recovery at tillering stage of sugarcane. Acta Physiologiae Plantarum, 2022, 44:3.
[11] 潘方胤, 杨俊贤, 吴文龙, 等. 甘蔗育种中抗旱品系筛选及简易鉴定. 广东农业科学, 2012, 39(16):10-12.
[12] 卢文祥, 卢李威. 甘蔗新品种桂柳05136选育与种性研究报告. 甘蔗糖业, 2015(4):1-6.
[13] Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79(2):209-218.
doi: 10.1023/B:PRES.0000015391.99477.0d pmid: 16228395
[14] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis//Schulze E D,Caldwell M M. Ecophysiology of Photosynthesis,Berlin:Springer-Verlag,1994,100:49-70.
[15] Ritchie R J. Fitting light saturation curves measured using modulated fluorometry. Photosynthesis Research, 2008, 96(3):201-215.
doi: 10.1007/s11120-008-9300-7 pmid: 18415696
[16] An D S, Zhao B S, Liu Y, et al. Simulation of photosynthetic quantum efficiency and energy distribution analysis reveals differential drought response strategies in two (drought-resistant and -susceptible) sugarcane cultivars. Plants, 2023, 12(5):1042.
[17] 叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用. 植物生态学报, 2014, 38(11):1241-1249.
doi: 10.3724/SP.J.1258.2014.00119
[18] Niyogi K K, Truong T B. Evolution of flexible non- photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 2013, 16:307-314.
[19] Joachim L, Barbara S, Christa C, et al. Two mechanisms of recovery from photoinhibition in vivo: Reactivation of photosystem II related and unrelated to D1-protein turnover. Planta, 1994, 194:15-21.
[20] 安东升, 曹娟, 黄小华, 等. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用. 植物生态学报, 2015, 39(4):398-406.
doi: 10.17521/cjpe.2015.0039
[21] Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 2016, 129:379-395.
doi: 10.1007/s10265-016-0816-1 pmid: 27023791
[22] Hu W H, Yan X H, He Y, et al. 24-epibrassinolide alleviate drought-induced photoinhibition in Capsicum annuum via up- regulation of AOX pathway. Scientia Horticulture, 2019, 243:484-489.
[23] Nar H, Saglam A, Terzi R, et al. Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica, 2009, 47(3):429-436.
[24] 王倩, 顾施滟, 雷鹏程, 等. 普通白菜干旱胁迫下叶绿素含量和光合生理特性变化研究. 金陵科技学院学报, 2015, 31(4):76-78.
[25] Cal A J, Sanciangco M, Rebolledo M C, et al. Leaf morphology,rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell and Environment, 2019, 42 (5):1532-1544
[26] Turgut R, Kadioglu A. The effect of drought, temperature and irradiation on leaf rolling in Ctenanthe setosa. Biologia Plantarum, 1998, 41(4):629-633.
[1] Hou Xiaomin, Yan Feng, Dong Yang, Zhao Fuyang, Li Qingquan, Ji Shengdong, Liu Yue, Lan Ying. Effects of Exogenous Betaine on Germination and Seedling Physiological Characteristics of Foxtail Millet under Drought Stress [J]. Crops, 2025, 41(2): 228-233.
[2] Ou Kewei, Lu Yefei, Nong Zemei, Zhu Pengjin, Pang Xinhua, Song Qiqi, Lü Ping. Analysis of Cell Structure Characteristics and Polygalacturonase Content Changes in Sugarcane Leaves Abscission Zone at Maturity Stage [J]. Crops, 2025, 41(1): 133-138.
[3] Yang Dandan, Han Xue, Kong Xinxin, Zhao Guoxuan, Su Yazhong, Zhao Pengfei, Jin Jianmeng, Zhao Guojian. Identification of Osmotic Stress Resistance and Analysis of Related Agronomic Traits of 71 Winter Wheat Seedlings [J]. Crops, 2025, 41(1): 243-249.
[4] Pang Minxuan, Wang Han, Li Zhitao, Shi Ningfan, Pu Zhuanfang, Zhang Feng, Yao Panfeng, Bi Zhenzhen, Bai Jiangping, Sun Chao. Effects of Applying Diquat-Dibromide on Potato Quality under Different Watering Treatments [J]. Crops, 2024, 40(6): 132-139.
[5] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[6] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[7] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[8] Xue Xinyu, Zhan Wenbo, Chen Xinyi, Zhou Ruixiang, Wang Yongxia, Xue Ruili, Li Hua, Wang Yuexia, Li Yan. Effects of Drought Stress during Grain Filling Period on Physiological and Root Characteristics of Different Wheat Cultivars [J]. Crops, 2024, 40(3): 192-200.
[9] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[10] Zhang Yu, Yang Wenjing, Liu Xuan, Nie Fengjie, Zhang Li, Shi Lei, Zhang Guohui, Guo Zhiqian, Gong Lei. Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress [J]. Crops, 2024, 40(2): 54-61.
[11] Yang Lipei, Han Shijian, Wei Benhui, Li Zhigang, Li Ruiling, Zhu Shuifang, Xiao Jiming, Li Suli. Effects of Interaction between Organic Fertilizer and Fenlong on Photosynthetic Physiological Characteristics and Tissue and Cell Structure of Sugarcane [J]. Crops, 2024, 40(1): 148-156.
[12] Zhou Huiwen, Yan Haifeng, Qiu Lihang, Fan Yegeng, Zhou Zhongfeng, Luo Ting, Deng Yuchi, Zhang Xiaoqiu, Liang Yongjian, Chen Rongfa, Wu Jianming. Study on Effects of Operation Parameters on Deposition Distribution of UAV Droplets of Sugarcane during Elongating Stage [J]. Crops, 2023, 39(6): 121-126.
[13] Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159.
[14] Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100.
[15] Jiang Shan, Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian. Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage [J]. Crops, 2023, 39(4): 202-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .