Crops ›› 2025, Vol. 41 ›› Issue (2): 172-179.doi: 10.16035/j.issn.1001-7283.2025.02.024

Previous Articles     Next Articles

Effects of Straw Returning with Nitrogen Application Reduction on Yield and Nitrogen Utilization of Rice in Liaohe Plain

Jin Dandan(), Sui Shijiang, Chen Yue, Li Bo, Qu Hang, Gong Liang()   

  1. Plant Nutrition and Environmental Resources Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
  • Received:2023-12-20 Revised:2024-05-08 Online:2025-04-15 Published:2025-04-16

Abstract:

In order to realize the rational and efficient utilization of straw nutrient resources and alleviate the ecological environment damage caused by a large number of straw discarded and incinerated, a field micro-plot experiment was carried out with conventional japonica rice “Yanfeng 47” as the material. Three straw returning methods(straw incorporation, straw mulching, no returning) and two nitrogen application levels (conventional: 260 kg/ha of pure nitrogen; nitrogen reduction: 210 kg/ha) was used to study the changes of rice yield, its components, nitrogen use efficiency and physiological and biochemical responses under straw returning and nitrogen reduction. The results showed that, under nitrogen reduction conditions, the yields of straw incorporation and straw mulching were 12.94 and 13.43 t/ha, respectively, which were not significantly different from those of conventional nitrogen application without returning to the field. The effective panicle number, grain number per panicle, seed-setting rate and 1000-grain weight under straw incorporation remained at a higher level, while the seed-setting rate was significantly decreased by 5.76% under straw mulching (P < 0.05). Under nitrogen reduction conditions, straw mulching significantly increased nitrogen utilization rate and nitrogen partial productivity by 52.70% and 38.28%, respectively (P < 0.05). Straw incorporation had no significant effects on nitrogen utilization rate and nitrogen partial productivity, but could significantly increase the glutamine synthetase activity of functional leaves at heading and filling stages, and the difference was significant (P < 0.05), so as to maintained the vigorous nitrogen metabolism capacity of rice. Considering the economic benefits, environmental effects and field operability, the scientific reduction of nitrogen fertilizer under straw incorporation has a great advantage in the utilization of rice yield potential.

Key words: Rice, Straw returning, Nitrogen fertilizer reduction, Yield, Nitrogen utilization

Table 1

Physicochemical properties of topsoil (0-20 cm) of experimental area in 2019 and 2020"

年份
Year
pH 有机质
Organic matter
(g/kg)
全氮
Total N
(g/kg)
速效氮
Rapidly available N
(mg/kg)
全磷
Total P
(g/kg)
有效磷
Available P
(mg/kg)
全钾
Total K
(g/kg)
有效钾
Available K
(mg/kg)
2019 7.43 23.62 1.46 115.33 1.22 38.86 24.00 239.00
2020 7.41 23.35 1.42 114.43 1.18 43.89 27.34 228.33

Fig.1

Effects of straw returning with nitrogen application reduction on the number of tillers on rice Different lowercase letters indicate significant differences among different treatments at P < 0.05 level. The same below."

Table 2

Effect of straw returning with nitrogen application reduction on aboveground biomass in rice t/hm2"

处理
Treatment
拔节期Jointing stage 抽穗期Heading stage 成熟期Maturing stage
叶片+茎鞘Leaf+stem-sheath 叶片+茎鞘Leaf+stem-sheath 穗Panicle 叶片+茎鞘Leaf+stem-sheath 穗Panicle
CK 1.41±0.09c 2.91±0.67c 0.71±0.04d 3.14±0.30b 6.23±0.33c
N210-N 2.78±0.40b 5.18±0.90b 1.33±0.08c 5.12±0.63a 10.75±0.49b
N210-M 3.77±0.19a 6.37±0.39ab 1.68±0.11a 5.15±0.92a 11.46±1.41ab
N210-G 3.00±0.14ab 6.29±0.38ab 1.53±0.04abc 5.82±0.44a 13.33±0.81a
N260-N 2.59±0.51b 6.76±0.23ab 1.42±0.16bc 6.40±0.96a 11.16±0.50ab
N260-M 3.79±0.59a 7.58±0.57a 1.74±0.14a 5.36±0.54a 11.70±0.09ab
N260-G 3.28±0.70ab 7.54±1.70a 1.65±0.20ab 5.08±0.64a 12.26±2.03ab

Table 3

Effects of straw returning with nitrogen application reduction on rice yield and its components"

因素
Factor
处理
Treatment
有效穗数
Number of efficient
panicles (×104 /hm2)
每穗实粒数
Grain number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
Yield
(t/hm2)
施氮量
N level (kg/hm2)

N210 311.27±69.91 114.20±12.06 94.50±2.48 26.19±1.10b 12.60±1.22
N260 310.38±62.93 115.59±12.08 94.76±2.40 25.51±0.68b 13.57±1.26
F 0.00ns 0.05ns 0.04ns 2.49ns 2.75ns
还田方式
Straw returning
method

N 317.49±50.33 116.60±15.07 95.98±1.85 26.47±0.53a 11.93±1.05
M 310.82±68.66 111.14±11.73 94.38±2.87 25.81±1.24ab 13.33±0.91*
G 304.15±78.01 117.00±10.60 93.26±1.80 25.28±0.66b 14.00±1.07*
F 0.30ns 0.36ns 2.13ns 2.84ns 6.52*
施氮量×
还田方式
N level×straw
returning
method
N210-N 317.49±54.47 107.00±11.17 94.86±2.13* 26.92±0.16a 11.44±0.59
N210-M 317.49±47.75 105.95±13.22 96.15±1.93* 26.51±1.33ab 12.94±0.91
N210-G 293.48±65.79 124.50±2.78 91.51±0.54 25.15±0.70b 13.43±1.25
N260-N 328.16±69.23 126.20±13.72 97.10±0.48* 26.02±0.26ab 12.42±1.31
N260-M 322.83±86.85 114.60±11.95 91.74±1.48 25.11±0.77b 13.72±0.88
N260-G 285.48±65.70 109.50±10.22 94.42±1.13 25.41±0.75b 14.57±0.54*
F 1.01ns 1.63ns 5.61* 2.93ns 3.84*

Fig.2

Effects of straw returning with nitrogen application reduction on the nitrogen uptake and utilization of rice"

Table 4

Effects of straw returning with nitrogen application reduction on key enzyme activities of nitrogen metabolism in leaves of rice at reproductive growth stages"

生育期
Growth period
处理
Treatment
硝酸还原酶
Nitrate reductase
[μmol/(h?g FW)]
谷氨酰胺合成酶
Glutamine synthetase
[μmol/(h?g FW)]
亚硝酸还原酶
Nitrite reductase
[μmol/(h?g FW)]
谷氨酸合成酶
Glutamate synthase
[nmol/(h?g FW)]
可溶性蛋白
Soluble protein
(mg/g FW)
抽穗期Heading stage CK 10.85±0.62bc 15.73±1.90c 16.01±0.89c 33.26±1.10d 47.31±3.43c
N210-N 9.35±0.42c 16.22±1.70c 17.98±1.81bc 53.74±0.80a 50.75±2.27abc
N210-M 16.13±0.96a 20.75±2.17ab 18.17±1.05abc 42.25±1.97b 54.62±3.03a
N210-G 15.76±2.45a 17.71±3.05bc 19.96±1.02ab 41.77±0.88b 46.47±2.51c
N260-N 12.99±0.00ab 16.47±1.43c 19.42±0.71ab 50.28±0.40a 48.60±2.88bc
N260-M 14.06±0.85a 16.66±1.69c 20.48±1.41a 37.45±3.01c 53.45±3.94ab
N260-G 16.12±2.68a 22.02±0.79a 17.69±1.53bc 33.81±0.98d 52.09±1.91abc
灌浆期Filling stage CK 11.36±0.64a 7.61±0.72d 16.89±0.70a 18.55±0.63e 83.58±2.96cd
N210-N 12.06±0.08a 8.81±0.84cd 16.95±0.81a 20.42±0.64de 84.60±3.53bcd
N210-M 12.43±1.25a 12.30±0.37a 14.33±0.72cd 26.81±1.33d 89.98±3.98b
N210-G 12.07±0.29a 10.71±0.90ab 14.59±0.66c 29.38±0.42c 87.89±0.83bc
N260-N 11.72±0.46a 9.65±1.64bc 16.53±0.23ab 22.93±1.25d 87.72±0.10bc
N260-M 11.78±0.07a 12.45±0.80a 15.44±0.27bc 53.60±3.45a 97.27±2.35a
N260-G 12.25±0.37a 11.96±0.59a 13.21±0.81d 48.23±1.31b 80.31±1.30d
[1] 中华人民共和国国家统计局. 中国统计年鉴, 北京: 中国统计出版社, 2021.
[2] 李波, 宫亮, 曲航, 等. 辽河三角洲稻区两种合理氮肥推荐阈值的方法研究. 农业资源与环境学报, 2020, 37(2):179-185.
[3] 宫亮, 金丹丹, 牛世伟, 等. 辽宁省水稻主产区化肥减施潜力分析. 中国农业科学, 2021, 54(9):1926-1936.
doi: 10.3864/j.issn.0578-1752.2021.09.010
[4] 金丹丹, 宫亮, 李波, 等. 2种缓/控释肥对滨海盐碱地区水稻产量及氮代谢的影响. 水土保持学报, 2020, 34(4):334-339.
[5] 赵士茹. 秸秆还田和穗肥等处理对不同水稻品种籽粒灌浆动态及稻米品质的影响. 扬州:扬州大学, 2022.
[6] 李波, 宫亮, 曲航, 等. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响. 作物杂志, 2020(1):173-178.
[7] 李一, 王秋兵. 我国秸秆资源养分还田利用潜力及技术分析. 中国土壤与肥料, 2020(1):119-126.
[8] 刘淑军, 李冬初, 黄晶, 等. 1988-2018年中国水稻秸秆资源时空分布特征及还田替代化肥潜力. 农业工程学报, 2021, 37(11):151-161.
[9] 李廷亮, 王宇峰, 王嘉豪, 等. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示. 中国农业科学, 2020, 53(23):4835-4854.
doi: 10.3864/j.issn.0578-1752.2020.23.010
[10] 柴如山, 黄晶, 罗来超, 等. 我国水稻秸秆磷分布及其还田对土壤磷输入的贡献. 中国生态农业学报(中英文), 2021, 29 (6):1095-1104.
[11] 柴如山, 王擎运, 叶新新, 等. 我国主要粮食作物秸秆还田替代化学氮肥潜力. 农业环境科学学报, 2019, 38(11):2583-2593.
[12] 杭维琦, 陈建江. 野外燃烧秸秆对环境质量的影响与防治. 环境监测管理与技术, 2000(2):36-37.
[13] 汪海波, 秦元萍, 余康. 我国农作物秸秆资源的分布、利用与开发策略. 国土与自然资源研究, 2008(2):92-93.
[14] 王国骄, 宋鹏, 杨振中, 等. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响. 作物杂志, 2021(4):67-72.
[15] Han X, Xu C, Dungait J A, et al. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences, 2018,15:1933-1946.
[16] 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012, 31(11):2192-2199.
[17] 廖萍, 刘磊, 何宇轩, 等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应. 作物学报, 2020, 46(1):84-92.
[18] Liao P, Huang S, Van Gestel N, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping systems. Field Crops Research, 2018,216:217-224.
[19] Pan F F, Yu W T, Ma Q, et al. Influence of 15 N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soil. Biology and Fertility of Soils, 2017,53:303-313.
[20] 蔡影, 付思伟, 张博睿, 等. 秸秆连续还田配施化肥对稻-油轮作土壤碳库及作物产量的影响. 环境科学, 2022, 43 (10):4716-4724.
[21] 李桂花, 张雪凌, 周吉祥, 等. 长期秸秆还田下有机无机配施及微量元素和缓释肥的施用对双季稻产量和肥料利用率的影响. 中国土壤与肥料, 2021(6):149-155.
[22] Liu Z, Liu W T, Liu H T, et al. Capture of soil respiration for higher photosynthesis with lower CO2 emission. Journal of Cleaner Production, 2020, 246(10):119029.
[23] 赵子靖, 孙建平, 戴相林, 等. 秸秆还田结合减量施肥对水稻产量和土壤养分的影响. 江苏农业科学, 2022, 50(10):66-71.
[24] 孙志祥, 李敏, 韩上, 等. 有机肥部分替代化肥和秸秆还田对双季稻产量、养分吸收及土壤肥力的影响. 安徽农业大学学报, 2020, 47(6):1012-1016.
[25] Zhang J W, Wang J D, Zhou Y, et al. Reduced basal and increased topdressing fertilizer rate combined with straw incorporation improves rice yield stability and soil organic carbon sequestration in a rice-wheat system. Frontiers in Plant Science, 2022,13:964957.
[26] 姚莉, 王宏, 张奇, 等. 持续秸秆还田减施化肥对水稻产量和氮磷流失的影响. 水土保持通报, 2022, 42(4):18-24.
[27] 金丹丹, 陈玥, 战莘晔, 等. 水稻氮素吸收利用及水杨酸的调节效应. 东北农业科学, 2021, 46(41):38-42.
[28] 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率小麦品种苗期根系氮代谢及其吸收能力差异分析. 麦类作物学报, 2016, 36 (3):325-331.
[29] 戴相林, 刘雅辉, 孙建平, 等. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响. 应用与环境生物学报, 2023, 29(4):994-1005.
[30] 冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45 (8):1250-1259.
doi: 10.3724/SP.J.1006.2019.82051
[31] 晏军, 王伟义, 李斌, 等. 秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响. 中国土壤与肥料, 2021 (5):74-82.
[1] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[2] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[3] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[4] Zhao Fuyang, Ma Bo, Hu Jifang, Tan Kefei, Liu Chuanzeng, Yan Feng, Dong Yang, Hou Xiaomin, Li Qingquan, Han Yehui. Evaluation of Photoperiod Sensitivity of Japonica Rice in Cold Regions under Different Photoperiod Conditions [J]. Crops, 2025, 41(2): 135-140.
[5] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
[6] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[7] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[8] Wu Lu, Zhang Hao, Yang Feiyun, Guo Erjing, Si Linlin, Cao Kai, Cheng Chen. Adaptability Assessment of WOFOST Model for Simulating Rice Growth and Development in the Jianghuai Region [J]. Crops, 2025, 41(2): 215-221.
[9] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[10] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[11] Jiang Suzhen, Xu Chao, Wang Zhongyuan, Zheng Shen, Chen Jianguo, Zhu Hanhua, Huang Daoyou, Zhang Quan, Zhu Qihong. Effects of Sepiolite and Biochar on the Uptake and Accumulation of Cadmium and Arsenic in Rice [J]. Crops, 2025, 41(2): 241-248.
[12] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[13] Zhang Jiazhi, Zhao Yuhan, Ding Junjie, Yao Liangliang, Qiu Lei, Zhang Maoming, Wang Zijie, Gao Xuedong, Huang Chengliang, Cui Shize, Yang Xiaohe. Effects of “Double-Exemption Dense Seedling” Technique on Seedling Quality and Enzyme Activity of Rice in Cold Region [J]. Crops, 2025, 41(2): 109-114.
[14] Long Weihua, Xian Zhihui, Zhang Zheng, Alibieligen·Hazitai , Zulehumaer·Wusimanjiang , Pu Huiming, Hu Maolong. Adaptability Analysis of Non-Transgenic Herbicide-Resistant Hybrid Rapeseed Lines from Lower Reaches of the Yangtze River in Ili River Valley, Xinjiang [J]. Crops, 2025, 41(1): 111-116.
[15] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!