Crops ›› 2025, Vol. 41 ›› Issue (1): 162-169.doi: 10.16035/j.issn.1001-7283.2025.01.020

;

Previous Articles     Next Articles

Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density

Zhou Miaomiao1(), He Ruitong1, Li Lan1, Wang Hongxin1, Peng Haoyuan1, Zhang Yubo1, Zhang Dan1,2, Wang Jinbin1,2, Luo Xinning1,2(), Qi Bingqin1,2()   

  1. 1College of Agronomy, Tarim University, Alar 843300, Xinjiang, China
    2Key Laboratory of Genetic Improvement and Efficient Production of Specialty Crops in Arid Southern Xinjiang, Alar 843300, Xinjiang, China
  • Received:2024-06-11 Revised:2024-07-19 Online:2025-02-15 Published:2025-02-12

Abstract:

The application of growth regulators, one of the important measures to increase yield, can eliminate the adverse effects of dense planting and improve the photosynthetic capacity of leaves. In this study, Denghai 618 (DH618) and MC670 were used as the test varieties, and three planting densities (9.0×104, 13.5×104, 18.0×104 plants/ha) were set up, and two treatments of spraying EDAH and water (CK) were used to study the regulation of growth regulators on photosynthetic characteristics and yield formation of maize under dense planting conditions. The results showed that with the increase of density, the grain yield, plant height and ear height of two varieties increased first and then decreased, and the leaf area, leaf mass per area, leaf thickness, total chlorophyll content and gas exchange parameters decreased gradually with the increase of density. In both cultivars, spraying EDAH significantly reduced plant height and ear height, and dramatically improved grain yields of the two varieties. Among them, the yield of DH618 was higher than MC670. Moreover, the leaf area, leaf mass per area, leaf thickness, total chlorophyll, and gas exchange characteristics increased as a result of spraying EDAH. In summary, spraying EDAH could effectively enhances photosynthesis and increased grain yield by regulating plant height, ear height, leaf area, leaf mass per area, leaf thickness, total chlorophyll content and gas exchange parameters. Among them, the dwarf variety DH618 was more strongly regulated by EDAH than the high stalk variety MC670.

Key words: Maize, High planting density, EDAH, Photosynthetic characteristics, Yield formation

Fig.1

Precipitation and average air temperature during maize growing season in the experimental area in 2023"

Table 1

Effects of EDAH on plant height, ear height and ear position coefficient under different treatments"

品种
Variety
处理
Treatment
密度
Density
株高
Plant
height
(cm)
穗位高
Ear
height
(cm)
穗位系数
Ear
position
coefficient
DH618 EDAH D1 193.8d 71.8e 0.37e
D2 209.5c 86.3c 0.41bc
D3 205.8c 80.5d 0.39d
平均值 203.0 79.5 0.39
CK D1 221.5b 88.3c 0.40cd
D2 232.8a 103.0a 0.44a
D3 225.3b 96.5b 0.43ab
平均值 226.5 95.9 0.42
MC670 EDAH D1 231.3de 87.8e 0.38d
D2 234.3d 100.8c 0.43b
D3 229.8e 91.5d 0.40c
平均值 231.8 93.4 0.40
CK D1 257.8b 101.8bc 0.40c
D2 267.3a 120.0a 0.45a
D3 246.0c 105.0b 0.43b
平均值 257.0 108.9 0.43
变异来源Source of variation
品种(V) ** ** ns
处理(T) ** ** **
密度(D) ** ** **
品种×处理(V×T) ns ns ns
品种×密度(V×D) ** ** ns
处理×密度(T×D) ** ns ns
品种×处理×密度(V×T×D) * ns ns

Fig.2

Effects of EDAH on leaf area of different leaf layers under different treatmentsThe different lowercase letters indicate significant differences at the P < 0.05 level, the same below."

Fig.3

Effects of EDAH on the leaf mass per area under different treatments"

Table 2

Effects of EDAH on leaf anatomical structure under different treatments μm"

品种
Variety
处理
Treatment
密度
Density
上表皮厚度
Upper epidermis thickness
下表皮厚度
Lower epidermis thickness
叶片厚度
Leaf thickness
DH618 EDAH D1 25.71±0.62a 16.37±1.37a 216.24±2.42a
D2 23.46±0.71bc 15.36±0.69ab 184.27±1.00b
D3 22.85±0.84bc 13.63±0.76b 169.76±8.01c
平均值 24.01±0.72 15.12±0.94 190.09±3.81
CK D1 24.34±1.38ab 15.73±2.28ab 208.96±0.62a
D2 23.26±0.44bc 15.08±0.74ab 173.87±5.60c
D3 22.59±0.99c 13.50±0.60b 161.76±2.85d
平均值 23.40±0.94 14.77±1.21 181.53±3.02
MC670 EDAH D1 24.17±0.82a 17.81±0.34a 186.92±1.89a
D2 23.03±2.36ab 16.86±0.80ab 176.97±1.76b
D3 20.45±2.93abc 16.39±0.67ab 175.82±1.37b
平均值 22.55±2.04 17.02±0.60 179.90±1.67
CK D1 23.44±1.94ab 17.76±1.36a 179.17±4.88b
D2 20.11±2.09bc 15.03±1.88b 131.60±6.25c
D3 18.89±1.67c 12.81±1.09c 126.72±3.83c
平均值 20.81±1.90 15.20±1.44 145.83±4.99
变异来源 品种(V) ** ** **
Source of variation 处理(T) * * **
密度(D) ** ** **
品种×处理×密度(V×T×D) ns ns **

Fig.4

Effects of EDAH on chlorophyll and carotenoid contents under different treatments"

Fig.5

Effects of EDAH on Pn, Gs, Ci, and Tr under different treatments"

Table 3

Effects of EDAH on maize yield and its components under different treatments"

品种
Variety
处理
Treatment
密度
Density
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
籽粒产量
Grain yield (kg/hm2)
生物产量
Biomass (kg/hm2)
收获指数
Harvest index
DH618 EDAH D1 470.2±5.2a 383.7±3.7a 16 119.6±696.5c 36 381.4±1596.6ab 0.45bc
D2 414.1±8.6b 357.3±4.3c 18 853.2±772.6a 39 416.3±3482.4a 0.48a
D3 353.5±9.6d 301.4±4.1e 17 181.5±606.3b 37 092.8±2696.4ab 0.46ab
平均值 412.6±7.8 347.5±4.0 17 384.8±691.8 37 630.2±2591.8 0.46
CK D1 405.5±10.4b 364.9±3.7b 13 202.6±160.3e 31 266.4±970.9c 0.42d
D2 375.6±11.3c 340.6±2.8d 16 224.0±606.1bc 34 964.2±691.4bc 0.47ab
D3 296.1±8.6e 279.7±4.9f 14 860.5±302.3d 33 980.8±1623.4bc 0.43cd
平均值 359.1±10.1 328.4±3.8 14 762.4±356.2 33 403.8±1095.2 0.44
MC670 EDAH D1 531.7±5.3a 266.8±5.2a 15 490.4±840.5bc 37 298.9±990.5b 0.42bc
D2 504.5±8.5b 252.4±9.7abc 17 810.6±823.4a 38 976.4±158.6a 0.46a
D3 387.1±7.8d 242.7±5.1c 16 076.3±574.5b 36 236.3±439.6b 0.45ab
平均值 474.4±7.2 254.0±6.7 16 459.1±746.1 37 503.9±529.5 0.44
CK D1 487.2±7.5b 258.1±7.6ab 13 021.9±917.1d 31 719.9±1104.2c 0.41bc
D2 456.0±11.9c 248.6±10.6bc 15 665.9±537.7bc 36 123.7±399.7b 0.45ab
D3 385.7±5.3e 224.1±7.3d 14 336.6±957.7cd 35 991.3±1218.9b 0.40c
平均值 443.0±8.2 243.6±8.5 14 341.5±804.2 34 611.6±907.6 0.42
变异来源 品种(V) ** ** ** ns *
Source of variation 处理(T) ** ** ** ** **
密度(D) ** ** ** ** **
品种×处理(V×T) ** * ns ns ns
品种×密度(V×D) ** ** ns ns ns
处理×密度(T×D) ** ns ns * ns
品种×处理×密度(V×T×D) ** ns ns ns ns
[1] Li S K, Zhao J R, Dong S T, et al. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] Qin X L, Feng F, Li Y J, et al. Maize yield improvements in China: past trends and future directions. Plant Breeding, 2016, 135(2):166-176.
[3] Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88(2/3):103-114.
[4] 徐彤, 吕艳杰, 邵玺文, 等. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49(2):472-484.
doi: 10.3724/SP.J.1006.2023.23028
[5] 卫丽, 熊友才, 马超, 等. 不同群体结构夏玉米灌浆期光合特征和产量变化. 生态学报, 2011, 31(9):2524-2531.
[6] Xue J, Gao S, Fan Y H, et al. Traits of plant morphology,stalk mechanical strength,and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 2020, 117:126073.
[7] 吕丽华, 王璞, 易镇邪, 等. 密度对夏玉米品种光合特性和产量性状的影响. 玉米科学, 2007, 15(2):79-81.
[8] 周艳敏, 张春庆. 玉米生育后期光合特性的遗传分析. 中国农业科学, 2008, 41(7):1900-1907.
[9] Bonelli L E, Andrade F H. Maize radiation use-efficiency response to optimally distributed foliar-nitrogen-content depends on canopy leaf-area index. Field Crops Research, 2020, 247:107557.
[10] 吴希, 王家瑞, 郝淼艺, 等. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响. 作物学报, 2023, 49(4):1065- 1078.
doi: 10.3724/SP.J.1006.2023.23032
[11] Whigham D K, Woolley D G. Effect of leaf orientation, leaf area, and plant densities on corn production. Agronomy Journal, 1974, 66(4):482-486.
[12] 吴贻波, 龚政, 常喜玲, 等. 增密对玉米花期冠层光合特性与粒库建成的影响特征. 华北农学报, 2022, 37(增1):96-102.
[13] 崔淑娜, 王晔, 卢雨晴, 等. 玉米穗三叶与产量的相关和通径分析. 作物杂志, 2023(2):201-206.
[14] Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies:some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33(1):125- 159.
[15] Scafaro A P, Von Caemmerer S, Evans J R, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant,Cell and Environment, 2011, 34(11):1999-2008.
[16] Terashima I, Hanba Y T, Tholen D, et al. Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 2011, 155(1):108-116.
doi: 10.1104/pp.110.165472 pmid: 21075960
[17] 吴含玉, 张雅君, 张旺锋, 等. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45(2):248-255.
doi: 10.3724/SP.J.1006.2019.83042
[18] Witkowski E T F, Lamont B B. Leaf specific mass confounds leaf density and thickness. Oecologia, 1991, 88:486-493.
doi: 10.1007/BF00317710 pmid: 28312617
[19] 李春奇, 王庭梁, 程相文, 等. 种植密度对夏玉米穗位叶片解剖结构的影响. 作物学报, 2011, 37(11):2099-2105.
doi: 10.3724/SP.J.1006.2011.02099
[20] 张玉斌, 曹庆军, 张铭, 等. 施磷水平对春玉米叶绿素荧光特性及品质的影响. 玉米科学, 2009, 17(4):79-81.
[21] 杨吉顺, 高辉远, 刘鹏, 等. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7):1226-1233.
[22] Xue H Y, Han Y C, Li Y B, et al. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Research, 2015, 184:17-27.
[23] Yan Y Y, Hou P, Duan F Y, et al. Improving photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different years in China. Photosynthesis Research, 2021, 150(1):295-311.
[24] Wu H Y, Qiao M Y, Zhang Y J, et al. Photosynthetic mechanism of maize yield under fluctuating light environments in the field. Plant Physiology, 2023, 191(2):957-973.
[25] 陈晨, 董树亭, 刘鹏, 等. 种植密度对玉米自交系产量和灌浆特性的影响. 玉米科学, 2012, 20(6):107-111.
[26] 王利青, 于晓芳, 高聚林, 等. 不同年代玉米品种籽粒产量形成对种植密度的响应. 作物学报, 2022, 48(10):2625-2637.
doi: 10.3724/SP.J.1006.2022.13057
[27] 王海永, 张明才, 陈小文, 等. 乙烯利对夏玉米子粒干物质积累的影响及生理机制探究. 玉米科学, 2013, 21(5):57-61.
[28] Zhang Q, Zhang L Z, Evers J, et al. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Research, 2014, 164:82-89
[29] Wang Q, Xue J, Chen J L, et al. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. Journal of Integrative Agriculture, 2020, 19(10):2419-2428.
doi: 10.1016/S2095-3119(20)63259-2
[30] 徐田军, 吕天放, 陈传永, 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019, 52(4):629-638.
doi: 10.3864/j.issn.0578-1752.2019.04.005
[31] Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24 (1):1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[32] Sangoi L. Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciência Rural, 2001, 31:159-168.
[33] Gong L S, Qu S J, Huang G M, et al. Improving maize grain yield by formulating plant growth regulator strategies in North China. Journal of Integrative Agriculture, 2021, 20(2):622-632.
[34] 任红, 周培禄, 赵明, 等. 不同类型化控剂对春玉米产量及生长发育的调控效应. 玉米科学, 2017, 25(2):81-85.
[35] 郑迎霞, 陈杜, 魏鹏程, 等. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响. 作物学报, 2021, 47(4):738-751.
doi: 10.3724/SP.J.1006.2021.03044
[36] Trachsel S, San Vicente F M, Suarez E A, et al. Effects of planting density and nitrogen fertilization level on grain yield and harvest index in seven modern tropical maize hybrids (Zea mays L.). Journal of Agricultural Science, 2016, 154(4):689-704.
[37] 周伟, 崔福柱, 段宏凯, 等. 不同播期与品种对糯玉米干物质积累的影响. 山西农业科学, 2019, 47(12):2090-2093.
[38] 于吉琳, 聂林雪, 郑洪兵, 等. 播期与密度对玉米物质生产及产量形成的影响. 玉米科学, 2013, 21(5):76-80.
[39] 侯佳敏, 罗宁, 王溯, 等. 增密对我国玉米产量―叶面积指数―光合速率的影响. 中国农业科学, 2021, 54(12):2538-2546.
doi: 10.3864/j.issn.0578-1752.2021.12.005
[40] Guo Q, Huang G M, Guo Y L, et al. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crops Research, 2021, 266:108141.
[41] 裴文东, 张仁和, 王国兴, 等. 玉米冠层结构和群体光合特性对增密的响应. 玉米科学, 2020, 28(3):92-98.
[42] 马翠娥, 刘宇, 邱茜, 等. 异质性光下玉米光合补偿限制与光合同化物的关系. 中国生态农业学报, 2024, 32(9):1462-1496.
[43] Craufurd P Q, Wheeler T R, Ellis R H, et al. Effect of temperature and water deficit on water‐use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Science, 1999, 39(1):136-142.
[44] 郑云普, 徐明, 王建书, 等. 气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响. 生态学报, 2016, 36(6):1526-1538.
[45] 孟浩峰, 雷长英, 张旺锋, 等. 系统调控下棉花比叶重的变化机制. 棉花学报, 2021, 33(2):144-154.
doi: 10.11963/1002-7807.mhfzyl.20210226
[46] 坚天才, 康建宏, 梁熠, 等. 增密对旱区春玉米光合特性及产量构成的影响. 西南农业学报, 2020, 33(11):2460-2468.
[47] 李超, 王吉, 朱敏, 等. 增密条件下化控处理对春玉米光合特性、叶片衰老及产量的影响. 河南农业科学, 2021, 50(3):33-41.
[1] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[2] Sun Yanjie, Wei Guocai, Wu Yuheng, Shi Yunqiang, Shao Yong, Liu Yingrui, Nan Yuantao, Zhang Weiyao. Genetic Diversity Analysis of 100 Maize Germplasm Resources by SNP Markers [J]. Crops, 2025, 41(2): 14-19.
[3] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[4] Chang Hongbing, Wang Chen, He Meijing, Cao Ximin, Yu Fengfang, Cao Xiaoliang, Song Wei, Lü Aizhi. Genetic Diversity Analysis of 69 Maize Germplasm Resources Based on SSR Markers [J]. Crops, 2025, 41(2): 47-53.
[5] Li Wenyue, Yu Tao, Cao Shiliang, Ma Xuena, Tang Gui, Gao Li, Yang Gengbin. Genetic Diversity Analysis of 96 Waxy Maize Inbred Lines Based on SNP Chip [J]. Crops, 2025, 41(2): 74-78.
[6] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[7] Hu Congcong, Li Hongyu, Sun Xianlong, Wang Tong, Zhao Haicheng, Fan Mingyu, Zhang Gongliang. Effects of Straw Returning and Nitrogen Fertilizer Management on Photosynthetic Characteristics and Yield of Rice in Cold Region [J]. Crops, 2025, 41(1): 147-154.
[8] Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234.
[9] Li Zesong, Xiao Shanshan, Zhang Yifei, Li Guibin, Lu Yuxin, Liu Haichen, Chen Zhongxu. Effects of Intercropping of Varieties with Different Maturity Stages on Grain Dehydration Performance and Grain Weight of Maize after Physiological Maturity [J]. Crops, 2025, 41(1): 99-110.
[10] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[11] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[12] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[13] Fu Xingfei, Li Yaqi, Yu Haohao, Li Guiping, Bi Xiaofei, Li Yanan, Hu Faguang, Tai Jie. Comparison of Photosynthetic Characteristics and Resistant Enzymes in Coffee Leaves under Different Levels of Leaf Rust Damage [J]. Crops, 2024, 40(6): 186-193.
[14] Han Xiaowei, Zhou Jiangming, Gao Yingbo, Tian Xuehui, Li Mingjun, Hao Yanjie, Li Wei, Li Shubing, Liu Shuze. Research on Refined Selection Method for Maize Seeds Based on Machine Vision Technology [J]. Crops, 2024, 40(6): 242-248.
[15] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .