Crops ›› 2025, Vol. 41 ›› Issue (2): 109-114.doi: 10.16035/j.issn.1001-7283.2025.02.015

Previous Articles     Next Articles

Effects of “Double-Exemption Dense Seedling” Technique on Seedling Quality and Enzyme Activity of Rice in Cold Region

Zhang Jiazhi1,2(), Zhao Yuhan2, Ding Junjie1, Yao Liangliang1, Qiu Lei1, Zhang Maoming1, Wang Zijie1, Gao Xuedong1, Huang Chengliang1, Cui Shize3, Yang Xiaohe1()   

  1. 1Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences / Key Laboratory of Main Crop Breeding and Cultivation in Sanjiang Plain, Jiamusi 154007, Heilongjiang, China
    2College of Agriculture, Heilongjiang Bayi Agricultural University / Key Laboratory of Crop Germplasm Improvement and Cultivation in Cold Region, Heilongjiang Education Department, Daqing 163319, Heilongjiang, China
    3Institute of Crop Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, Heilongjiang, China
  • Received:2023-07-06 Revised:2023-08-28 Online:2025-04-15 Published:2025-04-16

Abstract:

“Double-exemption dense seedling” can effectively alleviate the problems of high production cost, difficult in hiring labor and low production efficiency in rice production in cold areas. To clarify the effect of “double-exemption dense seedling” technology on seedling quality and seedling enzyme activity can provide theoretical basis and technical support for cost-saving, efficiency increase and agricultural sustainable development. In the experiment, Kenjing 8 was selected as the test variety, and six treatments were set up: two seed types (G: dry seed, Y: bud seed) and three seeding rates (B1: 200 g/plate, B2: 250 g/plate, B3: 300 g/plate). The effects of “double-exemption dense seedling” on rice emergence rate, seedling quality, α-amylase activity and antioxidant enzyme activity were studied. The results showed that the “double-exemption” G mode improved the emergence rate, seedling formation rate and endosperm residue of rice seedling. The emergence rate and seedling formation rate of B2 treatment were higher than those of B1 treatment. The endosperm residue decreased gradually with the increase of seeding rate. The number of roots treated with B1 was higher than that treated with B2 and B3. With the increase of seeding rate, the stem base width showed a trend of B1 > B2 > B3 in two years, and the activity of α-amylase in seed thorax breaking stage and needle standing stage gradually increased with the increase of seeding rate. The activity of α-amylase in 2.1 leaf stage showed a trend of decrease with the increase of seeding rate. The α-amylase activities of B2 and B3 treatments showed a decreasing trend with the growth of seedlings. The activity of antioxidant enzymes in leaves decreased gradually with the increase of seeding rate.

Key words: Rice, Double-exemption, Dense seedling, Seedling quality, Enzyme activity

Table 1

Processing combinations"

种子类型
Type of seeding
播种量
Seeding rate
处理
Treatment
移栽叶龄
Transplanting leaf age
G B1 GB1 2.0叶左右
B2 GB2
B3 GB3
Y B1 YB1 2.0叶左右
B2 YB2
B3 YB3

Fig.1

Interaction effects of seeding treatment and seeding amount on seedling rate and endosperm residue of rice Different lowercase letters indicate a significant difference among treatments (P < 0.05). Different capital letters indicate extremely significant difference among treatments (P < 0.01). “*”and“**”indicate significant or extremely significant differences between the two factors, respectively."

Table 2

Correlation analysis of rice seeding rate, seedling rate and endosperm residue"

年份
Year
相关系数
Coefficient of correlation
播种量
Seeding rate
出苗率
Rate of emergence
成苗率
Rate of seedling formation
胚乳残留量
Endosperm residue
2021 播种量 1.00
出苗率 0.23 1.00
成苗率 0.59 0.50 1.00
胚乳残留量 -0.69 0.41 0.04 1.00
2022 播种量 1.00
出苗率 0.13 1.00
成苗率 0.47 0.42 1.00
胚乳残留量 -0.39 0.76* 0.45 1.00

Table 3

Effects of different seeding treatments and seeding rate on seedling quality of rice"

年份
Year
处理
Treatment
株高
Plant
height (cm)
叶龄
Leaf age
根数
Number
of roots
根长
Root length
(cm)
茎基宽
Stem base
width (mm)
第一叶耳间距
First lug
spacing (cm)
百株地上干重
Above-ground
100 plant
dry weight (g)
百株地下干重
Underground
100 plant
dry weight (g)
2021 G 15.34aA 1.94bB 6.62aA 5.57aA 1.42aA 0.35bB 1.73bB 1.58bB
Y 14.21bA 2.16aA 7.22aA 5.93aA 1.38aA 1.75aA 2.66aA 1.80aA
FA 8.276** 23.937** 2.940 1.520 0.240 60.736** 2028.255** 84.021**
B1 14.68aA 2.18aA 7.07aA 5.89aA 1.52aA 1.46aA 2.17bA 1.66bB
B2 15.10aA 1.98bB 6.80aA 5.79aA 1.40aA 0.89bA 2.18bA 1.50cC
B3 14.54aA 1.99bB 6.90aA 5.57aA 1.28aA 0.81bA 2.24aA 1.90aA
FB 0.740 8.636** 0.200 0.420 2.160 5.161* 4.745* 97.522**
FA×B 3.110 3.980 0.250 0.280 0.190 0.240 25.141** 57.578**
2022 G 11.53aA 2.04aA 7.17aA 8.46aA 0.71aA 0.54bB 1.36bB 1.39aA
Y 10.06bB 2.02bB 6.89aA 8.06bA 0.54bB 0.71aA 1.39aA 1.38aA
FA 1.900 1.530 2.270 5.780** 19.850** 19.850** 0.082 0.010
B1 10.34bB 2.02bB 9.70aA 7.07aA 1.62aA 0.57bB 1.57aA 1.48aA
B2 10.75bAB 2.04aA 8.15bB 7.14aA 1.53bA 0.74aA 1.22cC 1.39bB
B3 11.29aA 2.03aAB 6.92cC 6.88aA 1.38cB 0.56bB 1.34bB 1.28cC
FB 0.267 0.415 0.702 93.781** 8.525** 8.525** 3.257 0.589
FA×B 36.153** 10.382** 10.304** 4.460** 4.797** 4.797** 163.057** 79.436**

Table 4

Effects of different seeding treatments and seeding rate on α-amylase activity in rice seedling stage U/g"

处理
Treatment
破胸期
Thoracotomy
period
立针期
Standing
injection period
1.1叶期
1.1 leaf
stage
2.1叶期
2.1 leaf
stage
G 4.50aA 3.32bA 1.87aA 1.55aA
Y 2.44bB 3.55aA 1.71bB 1.22bB
FA 1426.340** 5.730* 30.796** 816.458**
B1 2.66cC 2.90cB 1.78aA 1.46aA
B2 3.27bB 3.19bB 1.82aA 1.39bB
B3 4.47aA 4.22aA 1.75aA 1.30cC
FB 382.900** 68.190** 1.829 64.859**
FA×B 120.640** 0.044 432.260** 1070.168**

Table 5

Effects of different seeding treatments and seeding rate on antioxidant oxidase activities in rice leaves at seedling stage U/g"

处理Treatment SOD POD CAT
G 70.34aA 22 027.10aA 45.79aA
Y 56.21bB 21 173.11bB 44.39bB
FA 4622.110** 23.610** 11.160**
B1 69.45aA 24 064.06aA 47.02aA
B2 63.63bB 21 028.39bB 46.82aA
B3 56.75cC 19 707.87cC 41.42bB
FB 1246.970** 215.370** 76.910**
FA×B 79.670** 216.420** 0.110
[1] 刘方华. 水稻高产高效测土配方施肥最佳NPK用量研究. 重庆:西南大学, 2014.
[2] 国家统计局. 国际统计年鉴. 北京: 中国统计出版社, 2022.
[3] 张欣悦, 汪春, 李连豪, 等. 水稻植质钵育秧盘制备工艺及参数优化. 农业工程学报, 2013, 29(5):153-162.
[4] 彭亚琼, 郑华斌, 扈婷, 等. 垄作梯式栽培对水稻根系生长的影响. 作物研究, 2012, 26(7):14-17.
[5] 吴亦鹏. 水稻育插密播稀植秧技术值得尝试. 农机科技推广, 2019(3):15-16.
[6] 刘雪, 谭秀凤, 李金凤. 水稻免催芽播种试验. 北方水稻, 2020, 50(5):26-28.
[7] 刘义. 秧龄、 移栽密度和播种密度对双季稻生长特性的影响. 武汉:华中农业大学, 2015.
[8] 郑晓微, 吴树业, 刘姗, 等. 育秧方式与机插密度对早稻机插栽培的产量影响. 中国农学通报, 2014, 30(33):41-45.
doi: 10.11924/j.issn.1000-6850.2014-0484
[9] 胡剑锋, 杨波, 周伟, 等. 播种方式和播种密度对杂交籼稻机插秧节本增效的研究. 中国水稻科学, 2017, 31(1):81-90.
doi: 10.16819/j.1001-7216.2017.6036
[10] 李玉祥, 何知舟, 丁艳锋, 等. 播种量对机插水卷苗秧苗素质及产量形成的影响. 中国水稻科学, 2018, 32(3):247-256.
doi: 10.16819/j.1001-7216.2018.7103
[11] 刘晶. H2S调节萌发水稻种子中淀粉酶响应干旱胁迫的生理效应. 海口:海南大学, 2017.
[12] 闻祥成, 田华, 潘圣刚, 等. 叶面喷施植物生长调节剂对水稻产量及叶片保护酶活性的影响. 西南农业学报, 2015, 28(2):550-555.
[13] 牛春荟. 播种量和秧田水分管理对寒地水稻秧苗素质及产量品质的影响. 大庆:黑龙江八一农垦大学, 2022.
[14] 刘岩. 播种密度对水稻秧苗素质及对本田产量和品质的影响. 哈尔滨:东北农业大学, 2010.
[15] 中华人民共和国国家标准. 农作物种子检验规程:GB/T 3543.1-3543.7. 北京: 中国标准出版社, 1995.
[16] 李红宇. 水稻田间试验实用手册. 北京: 中国农业出版社, 2013.
[17] 张卫星, 朱德峰, 林贤青, 等. 不同播量及育秧基质对机插水稻秧苗素质的影响. 扬州大学学报(农业与生命科学版), 2007, 28(1):45-48
[18] 周宏伟. 水稻籽粒在萌发过程中胚乳消耗和淀粉体形态的变化. 扬州:扬州大学, 2006.
[19] 姚雄, 杨文钰, 任万军. 育秧方式与播种量对水稻机插长龄秧苗的影响. 农业工程学报, 2009, 25(6):152-157.
[20] 沈建辉, 邵文娟, 张祖建, 等. 水稻机插中苗双膜育秧落谷密度对苗质和产量影响的研究. 作物学报, 2004, 30(9):906-911.
[21] 姜心禄, 池忠志, 郑家国, 等. 成都平原稻麦两熟区机插秧育秧技术研究. 西南农业学报, 2007, 20(5):959-964.
[22] 李忠芹, 孙大武, 司宏明, 等. 南粳9108钵苗机插不同播种量对比试验研究. 大麦与谷类科学, 2017, 34(1):33-35.
[23] 葛才林, 杨小勇, 孙锦荷, 等. 重金属胁迫对水稻萌发种子淀粉酶活性的影响. 西北农林科技大学学报(自然科学版), 2002, 30(3):47-52.
[24] 李爱莉. 藜麦α-淀粉酶抑制剂基因的克隆及对转基因水稻发芽特性的研究. 成都:成都大学, 2021.
[25] 肖用森, 王正直, 郭绍川. 低温胁迫对杂交稻及其亲本幼苗内源活性氧清除剂的影响. 杂交水稻, 1990(5):39-42.
[26] 刘家忠, 龚明. 植物抗氧化系统研究进展. 云南师范大学学报(自然科学版), 1999, 19(6):1-11.
[1] Di Na, Zheng Xiqing, Wang Jing, Han Haijun, Li Na. Study on the Difference of Physiological Response of Sunflower to Broomrape Parasitism [J]. Crops, 2025, 41(2): 123-127.
[2] Zhao Fuyang, Ma Bo, Hu Jifang, Tan Kefei, Liu Chuanzeng, Yan Feng, Dong Yang, Hou Xiaomin, Li Qingquan, Han Yehui. Evaluation of Photoperiod Sensitivity of Japonica Rice in Cold Regions under Different Photoperiod Conditions [J]. Crops, 2025, 41(2): 135-140.
[3] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[4] Jin Dandan, Sui Shijiang, Chen Yue, Li Bo, Qu Hang, Gong Liang. Effects of Straw Returning with Nitrogen Application Reduction on Yield and Nitrogen Utilization of Rice in Liaohe Plain [J]. Crops, 2025, 41(2): 172-179.
[5] Wu Lu, Zhang Hao, Yang Feiyun, Guo Erjing, Si Linlin, Cao Kai, Cheng Chen. Adaptability Assessment of WOFOST Model for Simulating Rice Growth and Development in the Jianghuai Region [J]. Crops, 2025, 41(2): 215-221.
[6] Jiang Suzhen, Xu Chao, Wang Zhongyuan, Zheng Shen, Chen Jianguo, Zhu Hanhua, Huang Daoyou, Zhang Quan, Zhu Qihong. Effects of Sepiolite and Biochar on the Uptake and Accumulation of Cadmium and Arsenic in Rice [J]. Crops, 2025, 41(2): 241-248.
[7] Hu Congcong, Li Hongyu, Sun Xianlong, Wang Tong, Zhao Haicheng, Fan Mingyu, Zhang Gongliang. Effects of Straw Returning and Nitrogen Fertilizer Management on Photosynthetic Characteristics and Yield of Rice in Cold Region [J]. Crops, 2025, 41(1): 147-154.
[8] Xu Xiaozheng, Wang Jianjun. Research Progress on Molecular Mechanism of Photoperiod Influence on Rice Heading [J]. Crops, 2025, 41(1): 15-25.
[9] Zhang Baolong, He Jun, Zhang Yi, Tang Chi, Zhang Hongtao, Liao Wei, Li Fei. Effects of Slow-Release Fertilizers on Rice Growth Characteristics, Yield and Dry Matter Accumulation [J]. Crops, 2025, 41(1): 214-219.
[10] Ma Junmei, Dou Min, Liu Di, Yang Xiuhua, Yang Yong, Nian Fuzhao, Liu Yating, Li Yongzhong. Effects of Intercropping Flue-Cured Tobacco and Maize on Rhizosphere Soil Nutrients and Crop Growth [J]. Crops, 2025, 41(1): 227-234.
[11] Lei Xiangliang, Fang Jun, Yuan Xiaoquan, Li Dan, Liu Shijie, Zhan Jingyun, Huang Zhihua, Peng Jinjian, Jiang Shaomei, Zeng Xiaochun. Breeding Strategy and Introgression Analysis on a Ultra-Early-Maturing Hybrid Rice [J]. Crops, 2025, 41(1): 46-53.
[12] Yan Na, Xie Keran, Gao Ti, Hu Qiuqian, Cui Kehui. Physiological Mechanism of Increased Panicle Nitrogen Fertilizer Application on Alleviating High-Temperature Damage during the Rice Panicle Initiation Stage [J]. Crops, 2025, 41(1): 89-98.
[13] Fa Xiaotong, Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao. Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation [J]. Crops, 2024, 40(6): 1-8.
[14] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[15] Zeng Qianqian, Zhang Zhenyuan, Ma Xiue, Fang Yinghan, Zhai Jinlei, Jin Tao, Liu Dong, Liu Zhangyong. Effects of Diatomite Application on Yield and Nitrogen Use Efficiency of Rice [J]. Crops, 2024, 40(6): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!