Crops ›› 2018, Vol. 34 ›› Issue (5): 156-161.doi: 10.16035/j.issn.1001-7283.2018.05.025

Previous Articles     Next Articles

Effects of Sinorhizobium SD101 Inoculation and Shading on Nitrogen Fixation and Photosynthesis of Medicago sativa L.

Liu Shuxia1,2,Wei Guojiang2,Jing Ruiyong1,Wang Liyan1,Guan Xiangjun2,Sun Yufeng2,Wang Guangda1,Han Ruyue1,Shi Jie2,Guo Yongxia1   

  1. 1 Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2 Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163319, Heilongjiang, China
  • Received:2018-04-16 Revised:2018-07-13 Online:2018-10-15 Published:2018-10-12
  • Contact: Yongxia Guo

Abstract:

Plant growth and photosynthetic indexes in alfalfa (Medicago sativa L. WL319) were investigated after inoculation with Sinorhizobium fredii SD101 under shaded and subsequent recovered conditions in order to study the interactive effects of shading and nitrogen supply on plant growth and photosynthetic physiology. The results showed that under non-shading conditions, plant biomass, chlorophyll contents and photosynthetic capacity all significantly increased by inoculating with Sinorhizobium fredii SD101 as compared to the control alfalfa. Under shading condition, photosynthetic rate of the inoculated alfalfa decreased compared to the non-inoculated control alfalfa due to the influences of stomatal and non-stomatal factors, which lead the inoculated rhizobia not to play the role in alfalfa nitrogen fixation. After the restoration of light, the photosynthetic parameters were not recovered to the degree as the non-inoculated control. It could be inferred that only under suitable illumination condition symbiotic nitrogen fixation between alfalfa and Sinorhizobium fredii SD101 could promote the plant growth and photosynthesis.

Key words: Alfalfa, Shading, Rhizobia, Photosynthetic parameters

Table 1

Effects of shading and rhizobia inoculation on growth and nitrogen capacity in alfalfa"

项目Item 未避光Unshaded 避光Shaded
未接种
Non-inoculated
接种SD101
Inoculated SD101
未接种
Non-inoculated
接种SD101
Inoculated SD101
株高Plant height (cm) 76.54±0.12ab 80.47±0.09a 68.27±0.20b 78.39±0.15ab
地上生物量Aboveground biomass (g) 1.84±0.10b 2.03±0.14a 1.01±0.13c 1.03±0.09c
叶面积Leaf area (cm2) 1.17±0.05a 1.23±0.07a 0.76±0.01b 0.81±0.03b
单株根瘤数Nodules per plant 16.55±0.05b 20.11±0.02a 9.12±0.08c 10.43±0.05c
单个根瘤重Single nodule weight (g) 0.0043±0.0001b 0.0051±0.0004a 0.0011±0.0003c 0.0014±0.0000c
固氮酶活性Nitrogenase activity [ug/(g·h)] 30.3±0.3b 35.0±0.6a 18.7±0.5c 22.6±0.1c

Table 2

Effects of shading and rhizobia inoculation on alfalfa leaf chlorophyll contents ug/gFW"

项目Item 未避光Unshaded 避光Shaded
未接种
Non-inoculated
接种SD101
Inoculated SD101
未接种
Non-inoculated
接种SD101
Inoculated SD101
Chl a 1 837.4±23.1c 2 103.1±37.6b 2 321.9±26.4ab 2 562.5±25.9a
Chl b 623.1±11.2c 1 210.0±12.5a 954.6±8.9b 882.7±10.8b
总叶绿素含量Total Chlorophyll content 2 460.5±35.2b 3 313.1±33.0a 3 276.5±29.5a 3 345.2±21.2a
Chl a/Chl b 2.95±0.12a 1.74±0.08b 2.43±0.09ab 2.90±1.04a

Table 3

Effects of shading and rhizobia inoculation on photosynthetic parameters in alfalfa leaves"

项目Item 未接种Non-inoculated 接种SD101 Inoculated SD101
未避光Unshaded 避光Shaded 未避光Unshaded 避光Shaded
Pn [umol/(m2·s)] 5.04±0.10b 4.16±0.08b 7.60±0.13b 2.92±0.11c
Gs [mmol/(m2·s)] 0.076±0.001b 0.120±0.002a 0.124±0.008a 0.025±0.016c
Ci (umol/mol) 233.05±2.12b 304.15±4.03a 259.77±4.35b 248.14±4.52b

Table 4

Alfalfa leaf photosynthetic parameters after light recovery"

项目Item 未接种Non-inoculated 接种SD101 Inoculated SD101
未避光Unshaded 避光Shaded 未避光Unshaded 避光Shaded
Pn [umol/(m2·s)] 4.38±0.21b 6.79±0.10a 4.67±0.09b 5.22±0.14b
Gs [mmol/(m2·s)] 0.072±0.005b 0.187±0.022a 0.089±0.010b 0.123±0.016b
Ci (umol/mol) 240.27±3.14b 289.48±2.58a 260.12±5.62ab 269.38±6.17ab

Table 5

Effects of shading and rhizobia inoculation on chlorophyll fluorescence parameters in alfalfa leaves"

项目Item 未接种Non-inoculated 接种SD101 Inoculated SD101
未避光Unshaded 避光Shaded 未避光Unshaded 避光Shaded
Fv/Fm 0.831±0.004ab 0.816±0.009b 0.841±0.006a 0.832±0.001ab
ΦPSⅡ 0.622±0.015a 0.486±0.012c 0.638±0.018a 0.574±0.023b
qP 0.806±0.017a 0.701±0.020c 0.810±0.015a 0.752±0.011b
qN 0.279±0.020b 0.501±0.011a 0.275±0.009b 0.321±0.016b

Table 6

Alfalfa leaf chlorophyll fluorescence parameters after light recovery"

项目Item 未接种Non-inoculated 接种SD101 Inoculated SD101
未避光Unshaded 避光Shaded 未避光Unshaded 避光Shaded
Fv/Fm 0.822±0.001c 0.846±0.004a 0.836±0.013b 0.843±0.014ab
ΦPSⅡ 0.635±0.011a 0.599±0.014b 0.638±0.006a 0.636±0.016a
qP 0.847±0.009a 0.810±0.011c 0.849±0.009a 0.828±0.003b
qN 0.304±0.016a 0.284±0.005a 0.289±0.008a 0.247±0.007b
[1] 万涛, 邸伟, 马春梅 , 等. 大豆根瘤固氮酶活性与温度关系的研究. 作物杂志, 2012(6):56-60.
[2] 刘晓静, 蒯佳林, 李文卿 , 等. 硝态氮与铵态氮对紫花苜蓿根系生长及结瘤固氮的影响. 甘肃农业大学学报, 2011,46(5):106-110.
[3] 黄新, 王亚琴, 刘建新 , 等. 接种根瘤菌对不同紫花苜蓿品种结瘤和生物学产量的影响. 浙江农业学报, 2005,17(6):390-394.
[4] 齐敏兴, 刘晓静, 张晓磊 , 等. 不同磷水平对紫花苜蓿光合作用和根瘤固氮特性的影响. 草地学报, 2013,21(3):512-516.
[5] 周相娟, 梁宇, 沈世华 , 等. 接种根瘤菌和遮光对大豆固氮和光合作用的影响. 中国农业科学, 2007,40(3):478-484.
[6] 刘玉华, 史纪安, 贾志宽 , 等. 旱作条件下紫花苜蓿光合蒸腾日变化与环境因子的关系. 应用生态学报, 2006,17(10):1811-1814.
[7] 王伟, 王岩, 赵天宏 , 等. 刈割对UV-B辐射增强下紫花苜蓿光合及荧光特性的影响. 生态学杂志, 2016,35(7):1721-1729.
[8] 樊秦, 李彦忠 . 苜蓿茎点霉对紫花苜蓿光合生理的影响. 草业学报, 2017,26(1):112-121.
[9] 崔青青, 董彦红, 李曼 , 等. CO2加富下水氮耦合对黄瓜叶片光合作用和超微结构的影响. 应用生态学报, 2017,28(4):1237-1245.
[10] 王伟, 王岩, 梁变变 , 等. 初花期喷镧对UV-B辐射增强下紫花苜蓿光合及荧光特性的影响. 中国农业气象, 2017,38(4):230-239.
[11] He H, Peng Q, Wang X , et al. Growth,morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant and Soil, 2017,416(1-2):565-584.
doi: 10.1007/s11104-017-3242-9
[12] 李立辉, 王岩, 胡海燕 , 等. 初花期干旱对不同抗旱性紫花苜蓿光合特征及荧光参数的影响. 华北农学报, 2015,30(4):126-131.
doi: 10.7668/hbnxb.2015.04.022
[13] 米雪, 李晓兵, 王宏 , 等. 内蒙古典型草原不同放牧强度下羊草光合生理生态特性分析. 中国草地学报, 2015(3):92-98.
[14] 钱萍仙, 李学孚, 吴月燕 , 等. 遮阴对樟叶槭容器苗生长和生理特性的影响. 江苏农业学报, 2015,31(3):667-672.
[15] Klabi R, Bell T H, Hamel C , et al. Contribution of Medicago sativa to the productivity and nutritive value of forage in semi-arid grassland pastures. Grass and Forage Science, 2018,73(1):159-173.
doi: 10.1111/gfs.2018.73.issue-1
[16] 韦金河, 闻婧, 张俊 , 等. 夏季遮光对3种槭树PSⅡ叶绿素荧光参数的影响. 江苏农业学报, 2015,31(1):172-179.
[17] 许楠, 倪红伟, 钟海秀 , 等. 不同供氮水平对饲料桑树幼苗生长以及光合特性的影响. 江苏农业学报, 2015,31(4):865-870.
[18] 杨志晓, 丁燕芳, 张小全 , 等. 赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响. 生态学报, 2015,35(12):4146-4154.
doi: 10.5846/stxb201308212124
[19] Stroch M, Materova Z, Vrabl D , et al. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. Plant Physiology and Biochemistry, 2015,96:90-96.
doi: 10.1016/j.plaphy.2015.07.017
[20] 梁晓, 祁永, 吝亚杰 , 等. 应用综合指标法和灰色关联度法对10个紫花苜蓿品种进行耐盐性评价. 作物杂志, 2017(4):44-49.
[21] 郝曦煜, 王红丹, 尹智超 , 等. PEG胁迫对小豆苗期抗旱生理指标的影响及抗旱鉴定体系建立. 作物杂志, 2017(4):134-142.
[22] Zheng Y, Giordano M, Gao K . Photochemical responses of the diatom Skeletonema costatum grown under elevated CO2 concentrations to short-term changes in pH. Aquatic Biology, 2015,23(2):109-118.
doi: 10.3354/ab00619
[1] Dongfang Cai,Shufen Zhang,Jianping Wang,Junping He,Jinhua Cao,Yancheng Wen,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Effects of Slow-Released Nitrogen Fertilizer Application on Photosynthetic Characteristics and Yield in Brassica napus (Fengyou 10) [J]. Crops, 2018, 34(2): 136-140.
[2] Xingdi Wei,Qingfei Zeng,Yulan Tan,Xin Wei,Yajiao Li,Chao Chen. Investigation and Floristic Analysis on Rhizobial Resources of Trifolium repens in Some Regions of Guizhou Province [J]. Crops, 2018, 34(2): 35-43.
[3] Chunming Zhang,Xueyin Zhao,Hubin Yan,Huijun Zhu,Zeyan Zhang,Yaowen Zhang. Photosynthetic Characteristics of Different Adzuki Cultivars under Intercropping Patterns [J]. Crops, 2016, 32(6): 67-72.
[4] Hao Yang,Yanming Zhu. Isolation of a Alkali Stress Responsive Gene GsCHX19 and Transformation into Medicago sativa L. [J]. Crops, 2016, 32(3): 37-44.
[5] . [J]. Crops, 2013, 29(3): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .