Crops ›› 2020, Vol. 36 ›› Issue (3): 7-15.doi: 10.16035/j.issn.1001-7283.2020.03.002

Previous Articles     Next Articles

Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering

Duan Junzhi1, Qi Xueli2, Feng Lili1, Zhang Huifang1, Sun Yan1, Yan Zhaoling1, Chen Haiyan1, Qi Hongzhi1, Fan Wenjie1, Yang Cuiping1, Liu Yuxia1, Ren Yinling1, Zhang Jiayuan1, Li Ying3(), Zhuo Wenfei1()   

  1. 1Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3Editorial Department of Journal of Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2019-10-28 Revised:2019-12-26 Online:2020-06-15 Published:2020-06-10
  • Contact: Ying Li,Wenfei Zhuo E-mail:liying1233@163.com;kjcankao@126.com

Abstract:

Drought seriously affect the growth and yield of wheat. Drought tolerance breeding is an important measure to ensure wheat production. It is an effective way to improve wheat drought tolerance through genetic engineering technology compared with the conventional breeding methods. The drought tolerance genes include functional genes and regulatory genes which encode protein kinase, protease and transcription factors. At present, the genes proved to improve wheat drought tolerance are mainly transcription factor genes encoding CBF/DREB1, MYB, NAC (NAM, ATAF1, ATAF2 and CUC2), HD-Zip and WRKY and functional genes encoding LEA, betaine synthetase and trehalose synthase. This paper comprehensively review the progress on improvement of wheat drought tolerance by genetic engineering of above two classes of gene and analyze some problems in this field at present with the objective to provide reference for drought tolerance genetic improvement and breeding.

Key words: Wheat, Drought tolerance, Genetic engineering, Transcription factor, Functional protein

Table 1

The transcription factor genes reported to improve drought resistance in wheat and their function mechanism and effect"

基因家族
Gene
family
基因名称
Gene name
来源
Resource
作用机理
Function mechanism
抗旱效果
Drought-resistant
effect
超表达形式及负面效应
Overexpression type and
negative effect
AP2/ERF DREB1A[7] 拟南芥 增加根数 存活率提高 胁迫诱导表达;无
DREB[8] 拟南芥 提高叶片脯氨酸含量 存活率提高 胁迫诱导表达;无
DREB1B[9,10] 拟南芥 提高叶片脯氨酸含量、叶绿素含量、相对含水量和光合速率 存活率提高,部分株系产量提高 胁迫诱导表达;无
DREB[11] 大豆 提高可溶性糖含量 存活率提高 组成型表达;胁迫诱导表达,无
DREB[12] 棉花 提高可溶性糖含量 存活率提高 组成型表达;胁迫诱导表达,无
DREB2、DREB3[13] 小麦 降低气孔导度,上调其他10个CBF/DREB基因及LEACOR
(cold regulated)和DHN(dehydrin)等胁迫相关基因表达量
存活率提高 组成型表达;生长缓慢,开花时间推迟,产量降低;胁迫诱导表达,无
ERF3[14] 小麦 显著增加叶片脯氨酸和叶绿素含量,显著降低H2O2含量和气孔导度,显著提高一些胁迫相关基因的表达量,包括POX2(peroxidase 2)、OxOx2(oxalate oxidase 2)、BG3(beta-glucosidases 3)、LEA3、GST6(glutathione s-transferase
6)、DHN(dehydrin)、RAB18(ABA-responsive protein 18)、SDR(short-chain dehydrogenase/reductase)、TIP2
(tonoplast intrinsic protein 2)和Chit1(chitinase)等
存活率提高 组成型表达;无
ERF1-V[15] 簇毛麦 显著提高叶片叶绿素含量、过氧化物酶(POD)和超氧化物酶(SOD)活性,显著降低丙二醛(MDA)含量,显著上调编码POD和SOD等基因的表达 存活率提高 组成型表达;无
SHN1[16] 小麦 降低叶片的气孔密度和失水率,增加表皮蜡质中的烷烃含量,调控启动子区域含有DRE、GCC-box和CRT元件的胁迫相关基因的表达量 存活率提高 组成型表达;无
NAC SNAC1[17] 水稻 提高叶片水分和叶绿素含量及胁迫相关基因SPS(sucrose phosphate synthase)、PI3K(1-phosphatidylinositol-3-phosphate 5-kinase)、PP2C3(type 2C protein phosphatases)和RCAR
(regulatory components of ABA receptor)的表达量
存活率提高 组成型表达;无
SNAC1[18] 大麦 提高叶片相对含水量、光合能力和气孔关闭数目,增加分蘖数、穗数、穗粒数和粒重 存活率提高,
产量提高
组成型表达;无
NAC69[19] 小麦 增加根长和根生物量,提高水分利用效率 存活率提高,
产量提高
组成型表达;百粒重和产量降低,胁迫诱导表达,无
BTF3[20] 小麦 提高叶片相对含水量和脯氨酸含量,降低电导率和失水速率 存活率提高 基因沉默;无
HD-Zip HDZipⅠ-5[21] 小麦 存活率提高 组成型表达;植株矮小,生物量降低,开花推迟,产量降低
HDG11[22] 拟南芥 苗期干旱,降低气孔密度和失水速率,提高脯氨酸含量及过氧化氢酶(CAT)和SOD活性;孕穗期干旱,提高光合速率、水分利用效率和激发能效率,降低蒸腾速率,增加分蘖数、穗数和千粒重 存活率提高,
产量提高
组成型表达;无
WRKY WRKY2[23] 小麦 苗期干旱,降低叶片失水速率,增加脯氨酸、可溶性糖和叶绿素含量;抽穗前干旱,增加穗长、穗粒数和生物量 存活率提高,
产量提高
组成型表达;无
[1] Reynolds M, Bonnett D, Chapman S C , et al. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2010,62(2):439-452.
doi: 10.1093/jxb/erq311
[2] Kajla M, Yadav V K, Khokhar J , et al. Increase in wheat production through management of abiotic stresses:A review. Journal of Applied and Natural Science, 2015,7(2):1070-1080.
doi: 10.31018/jans.v7i2.733
[3] Lee S, Choi H, Hwang I , et al. Functional roles of the pepper pathogen-induced bZIP transcription factor,CAbZIP1,in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006,224(5):1209-1225.
doi: 10.1007/s00425-006-0302-4
[4] Hadiarto T, Tran L . Progress studies of drought-responsive genes in rice. Plant Cell Reports, 2010,30(3):297-310.
doi: 10.1007/s00299-010-0956-z
[5] Gaponenko A K, Shulga O A, Mishutkina Y B , et al. Perspectives of use of transcription factors for improving resistance of wheat productive varieties to abiotic stresses by transgenic technologies. Russian Journal of Genetics, 2018,54(1):27-35.
doi: 10.1134/S1022795418010039
[6] Marco F, Bitrián M, Carrasco P , et al. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology and Biotechnology, 2015,11:579-609.
[7] Pellegrineschi A, Reynolds M, Pacheco M , et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004,47(3):493-500.
doi: 10.1139/g03-140
[8] Wang J W, Yang F P, Chen X Q , et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genetica Sinica, 2006,33(5):468-476.
doi: 10.1016/S0379-4172(06)60074-7
[9] 王军卫 . 外源脱水应答转录因子DREB1B和CBF1基因在转基因小麦中表达研究. 杨凌:西北农林科技大学, 2005: 42-70.
[10] 荣红颖, 张立全, 杨凤萍 , 等. DREB1B基因在转基因小麦后代的稳定表达. 分子植物育种, 2009,7(3):437-443.
[11] Gao S Q, Xu H J, Cheng X G , et al. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 2005,50(23):2714-2723.
[12] Gao S Q, Chen M, Xia L Q , et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene,GhDREB,confers enhanced tolerance to drought,high salt,and freezing stresses in transgenic wheat. Plant Cell Reports, 2009,28(2):301-311.
doi: 10.1007/s00299-008-0623-9
[13] Morran S, Eini O, Pyvovarenko T , et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 2011,9(2):230-249.
doi: 10.1111/j.1467-7652.2010.00547.x
[14] Rong W, Qi L, Wang A Y , et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014,12(4):468-479.
doi: 10.1111/pbi.12153
[15] Xing L P, Di Z, Yang W , et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses. Frontiers in Plant Science, 2017,8:1948.
doi: 10.3389/fpls.2017.01948
[16] Bi H H, Shi J X, Kovalchuk N , et al. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications,improved drought tolerance and no yield penalty under controlled growth conditions. Plant Cell and Environment, 2018,41(11):2549-2566.
doi: 10.1111/pce.v41.11
[17] Saad A S I, Li X, Li H P , et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Science, 2013(203/204):33-40.
[18] Abdallat A M A, Ayad J Y, Elenein J M A , et al. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Moecular Breeding, 2014,33:401-414.
[19] Xue G P, Way H M, Richardson T , et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011,4(4):697-712.
doi: 10.1093/mp/ssr013
[20] Kang G Z, Ma H Z, Liu G Q , et al. Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat. Molecular Genetics and Genomics, 2013,288(11):591-599.
doi: 10.1007/s00438-013-0773-5
[21] Yang Y F, Luang S, Harris J , et al. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnology Journal, 2018,16(6):1227-1240.
doi: 10.1111/pbi.2018.16.issue-6
[22] Li L, Zheng M H, Deng G B , et al. Overexpression of AtHDG11 enhanced drought tolerance in wheat (Triticum aestivum L.). Molecular Breeding, 2016,36(3):1-10.
doi: 10.1007/s11032-015-0425-z
[23] Gao H M, Wang Y F, Xu P , et al. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018,9:997.
doi: 10.3389/fpls.2018.00997
[24] Dubouzet J G, Sakuma Y, Ito Y , et al. OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression. The Plant Journal, 2003,33(4):751-763.
doi: 10.1046/j.1365-313X.2003.01661.x
[25] Ito Y, Katsura K, Maruyama K , et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006,47(1):141-153.
doi: 10.1093/pcp/pci230
[26] Yang S, Tang X F, Ma N N , et al. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. Journal of Plant Physiology, 2011,168(15):1804-1812.
doi: 10.1016/j.jplph.2011.05.017
[27] Tang M J, Liu X F, Deng H P , et al. Over-expression of JcDREB,a putative AP2/EREBF domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas,enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Science, 2011,181(6):623-631.
doi: 10.1016/j.plantsci.2011.06.014
[28] Takuhara Y, Kobayashi M, Suzuki S . Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. Journal of Plant Physiology, 2011,168(9):967-975.
doi: 10.1016/j.jplph.2010.11.008
[29] Agarwal P, Agarwal P K, Joshi A J , et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010,37(2):1125-1135.
doi: 10.1007/s11033-009-9885-8
[30] Gutterson N, Reuber T L . Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004,7(4):465-471.
doi: 10.1016/j.pbi.2004.04.007
[31] Nakano T, Suzuki K, Fujimura T , et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[w] . Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783
[32] Sakuma Y, Liu Q, Dubouzet J G , et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290(3):998-1009.
doi: 10.1006/bbrc.2001.6299
[33] Yamaguchi-shinozaki K, Shinozaki K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress. The Plant Cell, 1994,6(2):251-264.
[34] Zhuang J, Chen J M, Yao Q H , et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 2011,38(2):745-753.
doi: 10.1007/s11033-010-0162-7
[35] Hao Y J, Wei W, Song Q X , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011,68(2):302-313.
doi: 10.1111/j.1365-313X.2011.04687.x
[36] Kjaersgaard T, Jensen M K, Christiansen M W , et al. Senescence-associated barley NAC (NAM,ATAF1,2,CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. Journal of Biological Chemistry, 2011,286(41):35418-35429.
doi: 10.1074/jbc.M111.247221
[37] Yang S D, Seo P J, Yoon H K , et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell, 2011,23(6):2155-2168.
doi: 10.1105/tpc.111.084913
[38] Peng X J, Wang Q Q, Wang Y , et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice. Plant Cell Reports, 2019,38(12):1473-1484.
doi: 10.1007/s00299-019-02458-2
[39] He Z H, Li Z Y, Lu H J , et al. The NAC protein from Tamarix hispida,ThNAC7,confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants, 2019,8(7):221.
doi: 10.3390/plants8070221
[40] Yuan X, Wang H, Cai J T , et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 2019,19(1):278.
doi: 10.1186/s12870-019-1883-y
[41] Xia N, Zhang G, Sun Y F , et al. TaNAC8,a novel NAC transcription factor gene in wheat,responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 2010,74(5):394-402.
doi: 10.1016/j.pmpp.2010.06.005
[42] Yong Y, Zhang Y, Lyu YA . Stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019,20(13):3225.
doi: 10.3390/ijms20133225
[43] Guan H, Liu X, Niu F , et al. ONAC72,a NAC-type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 2019,10:890.
doi: 10.3389/fpls.2019.00890
[44] Sivamani E, Bahieldin A, Wraith J M , et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 2000,155(1):1-9.
doi: 10.1016/S0168-9452(99)00247-2
[45] Bahieldin A, Mahfouz H T, Eissa H F , et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum, 2005,123(4):421-427.
doi: 10.1111/ppl.2005.123.issue-4
[46] Chauhan H, Khurana P . Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnology Journal, 2011,9(3):408-417.
doi: 10.1111/j.1467-7652.2010.00561.x
[47] 郭北海, 张艳敏, 李洪杰 , 等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000,42(3):279-283.
[48] 张艳敏, 郭北海, 蒋春志 , 等. 转甜菜碱醛脱氢酶(BADH)基因小麦的耐盐耐旱性. 华北农学报, 2003,18(1):29-32.
doi: 10.3321/j.issn:1000-7091.2003.01.009
[49] Wang G P, Zhen H, Li F , et al. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 2010,4(3):213-222.
doi: 10.1007/s11816-010-0139-y
[50] He C M, Zhang W W, Gao Q , et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica, 2011,177(2):151-167.
doi: 10.1007/s10681-010-0263-3
[51] 杜丽璞, 徐惠君, 叶兴国 , 等. 小麦转TPS基因植株的获得及其初步功能鉴定. 麦类作物学报, 2007,27(3):369-373.
doi: 10.7606/j.issn.1009-1041.2007.03.091
[52] 李永春, 王潇, 陈焕丽 , 等. 转TPSP融合基因小麦植株的获得及抗旱性初步鉴定. 麦类作物学报, 2009,29(2):195-198.
[53] 李金花, 孙敏善, 张春艳 , 等. 转TPSP融合基因小麦的耐旱相关特性. 植物生理学报, 2012,48(1):81-84.
[54] Magwanga R O, Lu P, Kirungu J N , et al. Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer drought stress tolerance in transgenic Arabidopsis thaliana. G3 Genes Genomes Genetics, 2018,8(8):2781-2803.
[55] Wang M, Li P, Li C , et al. SiLEA14,a novel atypical LEA protein,confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014,14:290.
doi: 10.1186/s12870-014-0290-7
[56] Yang J, Zhao S, Zhao B , et al. Overexpression of TaLEA3 induces rapid stomatal closure under drought stress in Phellodendron amurense Rupr. Plant Science, 2018,277:100-109.
doi: 10.1016/j.plantsci.2018.09.022
[57] Zhang X, Lu S, Jiang C , et al. RcLEA,a late embryogenesis abundant protein gene isolated from Rosa chinensis,confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses. Plant Molecular Biology, 2014,85(4):333-347.
doi: 10.1007/s11103-014-0192-y
[58] Luo D, Hou X M, Zhang Y M , et al. CaDHN5,a dehydrin gene from pepper,plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 2019,20(8):1989.
doi: 10.3390/ijms20081989
[59] Vendruscolo E C G, Schuster I, Pileggi M , et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007,164(10):1367-1376.
doi: 10.1016/j.jplph.2007.05.001
[60] Abebe T, Guenzi A C, Martin B , et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 2003,131(4):1748-1755.
doi: 10.1104/pp.102.003616
[61] 刘伟华, 赵秀振, 梁虹 , 等. 枯草杆菌果聚糖蔗糖酶基因转化小麦的研究. 中国农业科学, 2006,39(2):231-236.
[62] 胡梦芸, 李辉, 庞建周 , 等. 过量表达蔗糖转运蛋白基因增强转基因小麦的耐旱性. 中国农业科学, 2015,48(8):1473-1483.
doi: 10.3864/j.issn.0578-1752.2015.08.02
[63] Zang X S, Geng X L, Wang F , et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 2017,17(1):14.
doi: 10.1186/s12870-016-0958-2
[64] Ben-saad R, Ben-ramdhan W, Zouari N , et al. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Moecular Breeding, 2012,30:521-533.
[65] Yu T F, Xu Z S, Guo J K , et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 2017,7:44050.
doi: 10.1038/srep44050
[1] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
[2] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[3] Chai Fangmei, Gao Tiantian, Chai Shouxi, Cheng Hongbo, Song Yali, Lu Qinglin. Effects of Planting Density on Wheat Yield Formation in Different Ecological Regions of Gansu Province [J]. Crops, 2020, 36(3): 154-160.
[4] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[5] Zhu Yingjie, Liu Fuqi, Zhang Yan, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effect of Nitrogen Treatment on Wheat Yield and Quality in Different Soil Conditions [J]. Crops, 2020, 36(3): 184-190.
[6] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[7] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
[8] Wang Hezheng,Shen Sihan,Zhang Dongxia,Wang Gaijing,Zheng Jinzhi,Bi Biao,Wang Wenjie. Effects of Salicylic Acid on Physiological and Biochemical Characteristics of Wheat Seedling under Water Stress [J]. Crops, 2020, 36(2): 168-171.
[9] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[10] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[11] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice [J]. Crops, 2020, 36(1): 1-8.
[12] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[13] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[14] Yang Wenbiao,Zhang Huiyu,Li Ying,Qi Zewei,Liu Kaikai,Gao Zhiqiang,Sun Min,Xue Jianfu. Spatiotemporal Distribution of Potential Productivity of Winter Wheat and Meteorological Factor Analysis in Shanxi Province [J]. Crops, 2020, 36(1): 161-167.
[15] Wang Zhiwei, Wang Zhilong, Qiao Xiangmei, Yang Jinhua, Cheng Jiasheng, Cheng Geng, Yu Yaxiong. Identification of Genes Associated with Rust Resistance and Fusarium Head Blight Resistance in Yunnan Wheat Cultivars (Lines) by KASP Assays [J]. Crops, 2020, 36(1): 187-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!