Crops ›› 2020, Vol. 36 ›› Issue (6): 8-16.doi: 10.16035/j.issn.1001-7283.2020.06.002

Previous Articles     Next Articles

Proteomic Comparation Analysis of Thylakoid in Leaves of G-Locus Near Isogenic Line in Soybean

Zhao Yuyang1(), Song Jian2, Qiu Lijuan1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Germplasm & Biotechnology (Ministry of Agriculture and Rural Affairs), Beijing 100081, China
    2College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2020-04-20 Revised:2020-10-26 Online:2020-12-15 Published:2020-12-09
  • Contact: Qiu Lijuan E-mail:398884889@qq.com;qiulijuan@caas.cn

Abstract:

Thylakoid is the key carrier of photosynthesis and electron transport and also the core component of chloroplast, which is particularly important in the study of plant subcellular organelle proteome. In order to explore the proteome of thylakoid in soybean leaves, a pair of G-locus near-isogenic line (NIL-G and NIL-Y) with 97.6% similarity in the genetic background was used as materials. SDS-PAGE and mass spectrometry were used to isolate the thylakoid protein from soybean leaves. The results showed that the number of total protein and specific protein in NIL-G was higher than that in NIL-Y, respectively. The numbers of total protein and specific protein in NIL-G were 2 170 and 1 140, while 1 730 and 700 in NIL-Y. GO annotation and KEGG pathway analysis of these specific proteins showed that although the high similarity among genetic background, there are differences in the biological pathway, cell components, and molecular functions of thylakoid proteins in soybean. This provide a new clue to the future research on thylakoid proteins in soybean.

Key words: Soybean, Mass spectrometry, Thylakoid, Proteome

Fig.1

Detection of thylakoid proteins in leaves of near-isogenic lines by SDS-PAGE"

Table 1

Identification of thylakoid proteins number in soybean leaves of near-isogenic lines NIL-G and NIL-Y by segmented mass spectrometry"

材料
Material
< 25kDa 25~45kDa > 45kDa 特异
Specific
共有
Same
总计
Total
NIL-G 485 656 1 029 1 140 1 030 2 170
NIL-Y 373 458 899 700 1 730

Fig.2

GO annotation of specific proteins of near-isogenic lines NIL-G and NIL-Y at biological pathway level"

Fig.3

GO annotation of specific proteins of near-isogenic lines NIL-G and NIL-Y at cellular component level"

Fig.4

GO annotation of specific proteins of near-isogenic lines NIL-G and NIL-Y at molecular functional level"

Fig.5

Analysis of KEGG pathway of specific proteins in near-isogenic line NIL-G"

Fig.6

Analysis of KEGG pathway of specific proteins in near-isogenic line NIL-Y"

Table 2

Specific proteins related to photosynthesis and antenna in near-isogenic lines NIL-G and NIL-Y"

蛋白通路
Pathway of protein
NIL-G NIL-Y
基因编号Gene accession 功能Function 基因编号Gene accession 功能Function
光合作用 A5Z2K3 PSⅠ亚基PsaD C6SWI3 PSⅡR类亚基
Photosynthesis C6SX81 未知蛋白 C6SXP3 未知蛋白
C6SW43 未知蛋白 C6T308 假设的ATP合成酶亚单位b
C6T2Z2 未知蛋白 C6TFR5 未知蛋白
I1MNK0 放氧增强蛋白1 I1M3V1 PSⅡ修复蛋白PSB27-H1
I1M100 ATP合酶γ链
I1JCG8 铁氧还蛋白—NADP还原酶 -
I1NGD2 PSⅠ反应中心亚基II
A0A0R4J4B4 铁氧还蛋白—NADP还原酶
A0A0R4J389 PSⅠ反应中心亚基II
C6TC81 未知蛋白
I1JJ05 放氧增强蛋白2
I1K498 铁氧还蛋白-A
光合作用-天线蛋白 I1KR46 叶绿素a/b结合蛋白CP24 I1MNM3 叶绿素a/b结合蛋白6A
Photosynthesis- C6T8S8 未知蛋白 A0A0R0ERF9 叶绿素a/b结合蛋白CP26
antenna protein A0A0R0JQ91 叶绿素a/b结合蛋白P4
C6TM32 LHCII 1型叶绿素a/b结合蛋白
Q43437 PSⅡ的I型叶绿素a/b结合蛋白
A0A0R0K962 叶绿素a/b结合蛋白P4
I1MZ32 叶绿素a/b结合蛋白CP29

Fig.7

Hierarchical clustering analysis of proteins with different expression of near-isogenic lines NIL-G and NIL-Y"

[1] Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, 1996,13(1):19-50.
[2] 何大澄, 肖雪媛. 差异蛋白质组学及其应用. 北京师范大学学报(自然科学版), 2002,38(4):558-562.
[3] Jorrín-Novo J V, Maldonado A M, Echevarría-Zomeno S, et al. Plant proteomics update (2007-2008):second-generation proteomic techniques,an appropriate experimental design,and data analysis to fulfill MIAPE standards,increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009,72(3):285-314.
doi: 10.1016/j.jprot.2009.01.026
[4] Komatsu S, Kajiwara H, Hirano H. Soybean seed 34kDa oil-body associated protein separated by two-dimensional gel electrophoresis. Plant Science, 1992,81(1):21-27.
doi: 10.1016/0168-9452(92)90020-M
[5] Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immune dominant allergen from soybean. Plant Physiology, 2003,132(1):36-43.
doi: 10.1104/pp.103.021865 pmid: 12746509
[6] Nathan W O, Annamraju D S, James K W, et al. Proteomic analysis of soybean nodule cytosol. Phytochemistry, 2008,69(13):2426-2438.
doi: 10.1016/j.phytochem.2008.07.004 pmid: 18757068
[7] Ahsan N, Donnart T, Nouri M Z, et al. Tissue specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010,9(8):4189-4204.
doi: 10.1021/pr100504j pmid: 20540562
[8] Xu C, Sullivan J H, Garrett W M, et al. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry, 2008,69(1):38-48.
doi: 10.1016/j.phytochem.2007.06.010 pmid: 17645898
[9] Hajduch M, Gnapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean:Establishment of high-resolution two-dimensional reference maps,expression profiles,and an interactive proteome database. Plant Physiology, 2005,137(4):1397-1419.
doi: 10.1104/pp.104.056614 pmid: 15824287
[10] Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics, 2009,9(21):4889-4907.
doi: 10.1002/pmic.200900308 pmid: 19862761
[11] 郑维薇. 驯化和育种对大豆叶片蛋白质组的影响. 南昌:南昌大学, 2012.
[12] Sobhanian H, Razavizadeh R, Nanjo Y, et al. Proteome analysis of soybean leaves,hypocotyls and roots under salt stress. Proteome Science, 2010,8(1):1-15.
doi: 10.1186/1477-5956-8-1
[13] Mohammadi P P, Moieni A, Hiraga S, et al. Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 2012,75(6):1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419
[14] Ahsan N, Nanjo Y, Sawada H, et al. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics, 2010,10(14):2605-2619.
doi: 10.1002/pmic.201000180 pmid: 20443193
[15] Gupta R, Min C W, Kramer K, et al. A multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics, 2018,18(7):e1700366.
doi: 10.1002/pmic.201700366 pmid: 29457974
[16] Tian X, Liu Y H, Zhi G, et al. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports, 2015,42(3):581-601.
doi: 10.1007/s11033-014-3803-4 pmid: 25359310
[17] Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant & Cell Physiology, 2008,49(4):526-539.
doi: 10.1093/pcp/pcn027 pmid: 18281324
[18] Kamal A H, Komatsu S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. Journal of Proteome Research, 2015,14(5):2219-2236.
doi: 10.1021/acs.jproteome.5b00007 pmid: 25806999
[19] Dekker J P, Boekema E J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta Bioenergetics, 2005,1706(1/2):12-39.
doi: 10.1016/j.bbabio.2004.09.009
[20] Rhee K H. PhotosystemⅡ:The solid structural era. Annual Review of Biophysics & Biomolecular Structure, 2001,30(1):307-328.
[21] 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京:中国农业科学院, 2019.
[22] Wang M, Li W, Fang C, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018,50(10):1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[23] Zhou W, Cheng Y, Yap A, et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. The Plant Journal, 2009,58(1):82-96.
doi: 10.1111/j.1365-313X.2008.03766.x pmid: 19054358
[24] Young N D, Zamir D, Ganal M W, et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 1988,120(2):579-585.
pmid: 17246482
[25] Muehlbauer G J, Speech J E, Thomas-Compton M A, et al. Near-isogenic lines-A potential resource in the integration of conventional and linkage maps. Crop Science, 1988,28(5):729-735.
doi: 10.2135/cropsci1988.0011183X002800050002x
[26] Lesage V S, Merlino M, Chambon C, et al. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany, 2012,63(2):1001-1011.
doi: 10.1093/jxb/err330
[27] Torabi S, Wissuwa M, Heidari M, et al. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics, 2009,9(1):159-170.
doi: 10.1002/pmic.200800350 pmid: 19053143
[28] Wang N, Cao D, Gong F, et al. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. Journal of Proteomics, 2015,128:113-122.
doi: 10.1016/j.jprot.2015.07.027 pmid: 26244907
[29] Khan N A, Takahashi R, Abe J, et al. Identification of cleistogamy-associated proteins in flower buds of near-isogenic lines of soybean by differential proteomic analysis. Peptides, 2009,30(12):2095-2102.
doi: 10.1016/j.peptides.2009.08.012
[30] Brechenmacher L, Nguyen T H N, Zhang N, et al. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation. Journal of Proteome Research, 2015,14(10):4137-4146.
doi: 10.1021/acs.jproteome.5b00146 pmid: 26350764
[31] Kashino Y, Lauber W M, Carroll J A, et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry, 2002,41(25):8004-8012.
doi: 10.1021/bi026012+ pmid: 12069591
[32] McKenzie S D, Ibrahim I M, Aryal U K, et al. Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020,1861(2):148141.
doi: 10.1016/j.bbabio.2019.148141
[33] Peltier J, Wijk K. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell, 2000,12(3):319-341.
doi: 10.1105/tpc.12.3.319 pmid: 10715320
[34] Shao J Z, Zhang Y b, Yu J L, et al. Isolation of thylakoid membrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction. PLoS ONE, 2011,6(5):e20342.
doi: 10.1371/journal.pone.0020342 pmid: 21637806
[35] Wall D B, Kachman M T, Gong S, et al. Isoelectric focusing nonporous RP HPLC:a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Analytical Chemistry, 2000,72(6):1099-1111.
doi: 10.1021/ac991332t pmid: 10740846
[36] Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 1996,68(5):850-858.
doi: 10.1021/ac950914h pmid: 8779443
[37] Swain M, Ross N W. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis, 1995,16(6):948-951.
doi: 10.1002/elps.11501601159 pmid: 7498141
[1] Wang Caijin, Di Wenjing, Ma Shumei, Wang Yang. Mining the Elite Allele of Resistance of Cercospora sojina Hara Race 1 in Soybean Resources [J]. Crops, 2020, 36(6): 189-196.
[2] Chang Shihao, Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui, Geng Zhen. Comprehensive Analysis of Main Agronomic Traits of Summer Sowing Soybean Varieties (Lines) in Huang-Huai-Hai Region [J]. Crops, 2020, 36(3): 66-72.
[3] Xu Ran, Wang Caijie, Zhang Lifeng, Li Wei, Zhang Yanwei, Lin Yanhui, Li Weiu. The Breeding of Soybean Variety Qihuang 34 by Phenotypic Design Breeding Technology [J]. Crops, 2020, 36(3): 73-78.
[4] Huang Junxia,Huang Tian,Rao Demin,Zhang Minghao,Meng Fangang,Yan Xiaoyan,Zhang Wei. Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics [J]. Crops, 2020, 36(2): 82-87.
[5] Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202.
[6] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45.
[7] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16.
[8] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
[9] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[10] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[11] Bo Liu,Ling Wei,Junhong Xiao,Haifeng Yang,Xueyan Duan,Aiping Chen,Ruilan Ren. Study on Improving the Hybrid Seed Setting Rate of Soybean [J]. Crops, 2019, 35(1): 81-84.
[12] Yue Li,Haiyan Li,Jidong Yu,Jie Deng,Yuanfu Gong,Junshu Zhu. Allelopathy of Extracts from Hemp Straw on Soybean [J]. Crops, 2019, 35(1): 175-179.
[13] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
[14] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[15] Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage [J]. Crops, 2018, 34(1): 152-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!