Crops ›› 2021, Vol. 37 ›› Issue (1): 16-25.doi: 10.16035/j.issn.1001-7283.2021.01.003

Previous Articles     Next Articles

Cloning, Molecular Characteristics Analysis and Genetic Transformation of Arabidopsis thaliana of ZmGS5 Gene in Maize

Liu Xiaoli1,2(), Han Litao1, Wei Nan1, Shen Fei1, Cai Yilin2()   

  1. 1Department of Food Engineering, Henan Vocational College of Agriculture, Zhengzhou 451450, Henan, China
    2Maize Research Institute, Southwest University, Chongqing 400715, China
  • Received:2020-07-30 Revised:2021-01-12 Online:2021-02-15 Published:2021-02-23
  • Contact: Cai Yilin E-mail:314496088@qq.com;caiyilin1789@163.com

Abstract:

High yield is an important goal of the maize breeding, grain size is a major determinative factor of high yield. In this study, based on the method of homology cloning, the OsGS5 sequence was used as a template to obtain the ZmGS5 gene. The sequencing result revealed that the full length cDNA of ZmGS5 was 1695bp. The Open Reading Frame (ORF) encoding 496 amino acid was 1491bp. The ZmGS5 protein contained conservative structure domain Peptidase-S10, a signal peptide, an active site of the serine carboxypeptidases, which were all conformed to the structure of serine carboxypeptidase family and also conformed to the OsGS5 related research results. Phosphorylation locus analysis indicated that the protein contained recognition loci of Ser, Thr, Tyr kinases. The result of real-time quantitative PCR showed that ZmGS5 had a much higher expression level in tassel and leaves, and the lower expression level in embryo and endosperm. According to agrobacterium-mediated method, we established genetic transformation system in Arabidopsis and obtained homozygous transgenic lines. The 1000-seed weight of T3 Arabidopsis (0.0169g) was higher than that of wild type (0.0139g).

Key words: ZmGS5, Gene cloning, Serine carboxypeptidases, Molecular characteristics analysis, Genetic transformation

Table 1

Sequences of all PCR primers used"

引物Primer 引物序列Primer sequence 引物Primer 引物序列Primer sequence
ZmGS5-F CATATGGCGACAATGGCAGGG ZmGS5-R TTGTCATCTGTGTGTGGGAAGC
ZmGS5-3′-GSP1 TGCTGTTGACAAGGCAGTCGTAGCCAA ZmGS5-3′-GSP2 CGTAGCCAACAGACAGGAACATTTCAG
ZmGS5-5′-GSP1 GATGATGTGTTGGTGTAGGAGAAGCCA ZmGS5-5′-GSP2 ATTGAGCCAGAGTAGGAGAGGCTTGTG
UPM CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT NUP CTAATACGACTCACTATAGGGC
ZmGS5-qF CACAAGCCTCTCCTACTCTGGCTCAAT ZmGS5-qR TTCGTGGCTCCTATACTGCGGAAACCT

Fig.1

Rapid amplification of 3′ and 5′ ends of ZmGS5 1: 3′-RACE, 2: 5′-RACE, M: marker"

Fig.2

Amino acid composition of ZmGS5"

Fig.3

ProtScale analysis of ZmGS5"

Fig.4

Secondary structure of different plants homologous proteins of ZmGS5"

Fig.5

Spatial structure of ZmGS5 protein"

Table 2

Confidently predicted signal peptides, repeats, and domains of OsGS5 and ZmGS5"

蛋白
Protein
名称
Name
起点
Starting point
终点
End point
E
E-value
OsGS5 信号肽 1 30 N/A
简单重复组件 2 14 N/A
简单重复组件 17 28 N/A
Peptidase-S10结构域 48 475 1.1e-136
ZmGS5 信号肽 1 37 N/A
简单重复组件 13 25 N/A
Peptidase-S10结构域 64 489 8.2e-141
简单重复组件 313 330 N/A

Fig.6

Prediction of signal peptides of ZmGS5"

Table 3

Comparison of ZmGS5 and OsGS5 in phosphorylation sites"

名称
Name
位点
Site
氨基酸识别位点
Amino acid recognition site

Value
名称
Name
位点
Site
氨基酸识别位点
Amino acid recognition site

Value
预测
Forecast
ZmGS5 73 SPPVSQFAG 0.939 OsGS5 57 SPAVSQFAG 0.622 丝氨酸Senine
99 EAQTSPAHK 0.654 83 EAQASPAPE 0.844
163 GVGFSYTNT 0.780 149 GVGFSYTNT 0.502
205 EFYISGESY 0.524 191 EFYISGESY 0.610
296 SAVFSQYQE 0.662 283 NIIFSQYNQ 0.602
344 IRMFSGYDP 0.997 328 IKMFSGYDP 0.995
ZmGS5 167 SYTNTSSDL 0.748 OsGS5 153 SYTNTSSDL 0.748 苏氨酸Threonine
463 MTMVTIRGA 0.815 449 MTMVTVRGA 0.769
ZmGS5 184 AEDAYSFLV 0.902 OsGS5 170 AEDAYSFLV 0.902 酪氨酸Tyrosine
203 SHEFYISGE 0.821 189 DNEFYISGE 0.925
209 SGESYAGHY 0.936 195 SGESYAGHY 0.936
222 AELVYDRNK 0.865 208 ADLVYERNK 0.842
248 LTDDYYDSK 0.906 235 LTDDYYDSK 0.906
249 TDDYYDSKG 0.980 236 TDDYYDSKG 0.980
269 SDEVYERIK 0.986 256 SDQVYERIK 0.952
350 YDPCYSSNA 0.970 334 YDPCYSSYA 0.917
357 NAEKYFNDA 0.948 341 YAEDYFNKH 0.955

Fig.7

The homology analysis of ZmGS5 and GS5 in other plants"

Table 4

The change of allelic variation in cDNA sequences of ZmGS5 and amino acid sequence of ZmGS5"

多态性位点
Polymorphic locus
43、44、45 68 132 151 241 421 673 690 757 808 879 1231 1304 1357 1394 1420 1456 1457
cDNA突变位点
cDNA mutation
插入或删除
Insert or delete
T→C C→T C→T C→T G→A C→T C→T A→C C→T G→T G→C C→T C→A A→G T→C C→T A→G
B73 T C C C G C C A T G G C C A T C A
Mo17 T C C C G C C A T T G C C A T C A
178 T C C C G C C A T G G C C A T C A
郑58 T C C C G T C C C G C T A G C T G
昌7-2 GTC C C T T A T C C C G C T A G C T G
黄C GTC C C T T A T T C C G G C C A T C A
I15016 GTC C T T T A T T C C G G C C A T C A
I15018 T C C C G C C A T G G C C A T C A
I15020 T C C C G T C C C G C T A G C T G
I15030 GTC C C T T A T T C C G G C C A T C A
I15031 GTC C C T T A T T C C G G C C A T C A
氨基酸突变位点
Amino acid mutation
插入或删除
Insert or delete
F→L A→V T→I S→I I→V T→A
B73 F A T S I T
Mo17 F A T I I T
178 F A T S I T
郑58 F A T S V A
昌7-2 S L A T S V A
黄C S L A I S I T
I15016 S L V I S I T
I15018 F A T S I T
I15020 F A T S V A
I15030 S L A I S I T
I15031 S L A I S I T

Fig.8

Alignment of the amino acid sequence"

Fig.9

Neighbor-joining tree of SCPL family proteins"

Fig.10

The qRT-PCR analysis of ZmGS5 gene expression in different tissues of maize"

Fig.11

Kernel phenotypes of eleven inbred lines"

Table 5

Phenotypic analysis of eleven inbred lines kernels"

指标Index B73 Mo17 178 郑58 Zheng 58 昌7-2 Chang 7-2 黄C Huang C I15016 I15018 I15020 I15030 I15031
百粒重100-grain weight (g) 19.14 28.28 18.99 24.56 23.78 24.77 18.04 19.05 18.52 24.98 24.54
百粒体积100-grain volume (mL) 18.50 24.67 17.33 23.83 21.00 22.50 17.05 18.30 17.93 22.53 23.40
十粒长10-grain length (cm) 9.90 9.92 7.65 9.86 9.55 9.98 7.69 7.85 7.64 10.25 10.30
十粒宽10-grain width (cm) 7.03 8.51 7.61 7.85 7.38 7.71 7.45 7.49 7.57 7.50 7.58
十粒厚10-grain thickness (cm) 5.07 6.01 5.96 5.81 5.94 5.63 5.66 5.89 5.92 5.32 5.28

Fig.12

The detection of ZmGS5 in the leaves of T0 generation"

Fig.13

Screening of the T1 and T2 generations of transgenic Arabidopsis"

Table 6

The 1000-seed weight of the wild-type plants and T3 plants of Arabidopsis"

编号
No.
千粒重
1000-seed
weight (g)
编号
No.
千粒重
1000-seed
weight (g)
编号
No.
千粒重
1000-seed
weight (g)
WT-1 0.0139 WT-2 0.0132 WT-3 0.0140
WT-5 0.0139 WT-6 0.0143
T3-7-1 0.0172 T3-3-1 0.0189 T3-1-10 0.0175
T3-1-11 0.0181 T3-7-9 0.0170 T3-14-10 0.0184
T3-1-6 0.0187 T3-10-13 0.0167 T3-7-7 0.0150
T3-13-11 0.0151 T3-1-9 0.0192 T3-2-16 0.0147
T3-8-5 0.0176 T3-7-11 0.0152 T3-18-3 0.0150
T3-2-3 0.0164 T3-20-8 0.0182 T3-14-5 0.0192
T3-10-7 0.0168 T3-5-9 0.0159 T3-2-17 0.0182
T3-19-1 0.0156 T3-1-4 0.0168 T3-20-6 0.0151
T3-14-1 0.0181 T3-13-14 0.0177 T3-3-2 0.0157
T3-2-9 0.0168 T3-3-4 0.0187 T3-6-3 0.0162
T3-19-2 0.0155 T3-4-6 0.0183 T3-8-10 0.0150
T3-19-5 0.0180 T3-14-9 0.0153 T3-10-13 0.0170
T3-13-8 0.0183
[1] 李向拓, 毛建昌, 吴权明. 分子标记在玉米育种中的应用. 玉米科学, 2004,43(2):26-29.
[2] 贾波, 管飞翔, 谢庆春, 等. 玉米产量性状QTL定位分析. 西南农业学报, 2013,26(1):22-25.
[3] 黄荣荣, 周子键, 陈甲法, 等. 玉米缺陷性籽粒突变体的遗传分析及突变基因dek1-T7的定位. 分子植物育种, 2012,10(2):163-168.
[4] Li X, Chen G H, Zhang W Y, et al. Genome-wide transcriptional analysis of maize endosperm in response to ae wx double mutations. Journal of Genetics and Genomics, 2010,37(11):749-762.
doi: 10.1016/S1673-8527(09)60092-8 pmid: 21115169
[5] Yi G, Lauter A M, Scott M P, et al. The thick aleurone 1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernell. Plant Physiology, 2011,156:1826-1836.
doi: 10.1104/pp.111.177725 pmid: 21617032
[6] 宋同明, 陆效武. 对一个玉米双重标记新突变基因(os)的染色体定位和初步遗传研究. 遗传学报, 1993(5):432-438.
[7] Lid S E, Gruis D, Jung R, et al. The defective kernel 1 (dek1) gene require for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2002,8(99):5460-5465.
[8] Jahnke S, Scholten S. Epigenetic resetting of a gene imprinted in plant embryos. Current Biology, 2009,19:1677-1681.
doi: 10.1016/j.cub.2009.08.053 pmid: 19781944
[9] Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[10] Kellogg E A. Evolutionary history of the grasses. Plant Physiology, 2001,125(3):1198-1205.
pmid: 11244101
[11] 王建兵, 汤华, 黄益勤, 等. 玉米和水稻重要性状QTL的比较研究. 遗传学报, 2004,31(12):1401-1407.
[12] Raith M R, Kelty C A, Griffith J F, et al. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. Water Research, 2013,47(18):6921-6928.
doi: 10.1016/j.watres.2013.03.061 pmid: 23871256
[13] 刘晓丽, 魏楠. 拟南芥的遗传转化. 河南农业, 2019(27):45-46.
[14] Xu C J, Liu Y, Li Y B, et al. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,9(66):2611-2623.
[15] 胡甘雨, 司风铃, 车燕飞, 等. 葱蝇过氧化氢酶基因的克隆及生物信息学分析. 西南大学学报(自然科学版), 2014,36(2):32-40.
[16] Mahoney J A, Ntolosi B, DaSilva R P, et al. Cloning and characterization of CPVL,a novel serine carboxypeptidase,from human macrophages. Genomics, 2001,72:243-251.
doi: 10.1006/geno.2000.6484 pmid: 11401439
[17] Shirley A M, Chapple C. Biochemical characterization of sinapoyglucose choline sinapolytransferase,a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. Journal Biological Chemistry, 2003,278(22):19870-19877.
[18] Cercós M, Urbez C, Carbonell J. A serine carboxypeptidase gene (PsCP),expressed in early steps of reproductive and vegetative development in Pisum sativum,is induced by gibberellins. Plant Molecular Biology, 2003,51(2):165-174.
doi: 10.1023/a:1021142403856 pmid: 12602875
[19] 刘丽, 王静, 张志明, 等. 玉米丝氨酸羧肽酶基因(ZmSCP)的克隆及表达分析. 作物学报, 2013,39(1):164-171.
doi: 10.3724/SP.J.1006.2013.00164
[20] Liu H Z, Wang X E, Zhang H J, et al. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene, 2008,420:57-65.
pmid: 18571878
[1] Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili. Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet [J]. Crops, 2019, 35(3): 73-79.
[2] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[3] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum [J]. Crops, 2018, 34(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[7] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[8] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[9] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .
[10] Yaoyan Li,Yanyan Pei,Shanyan Huang,Yingyan Zhang,Songji Wei,Yangjiao Xie,Qiong Zhou. Pharmacognosy of Zhongliuteng (Pileostegia tomentella Hand. Mazz) of Yao Medicine[J]. Crops, 2018, 34(1): 61 -65 .