Crops ›› 2021, Vol. 37 ›› Issue (1): 7-15.doi: 10.16035/j.issn.1001-7283.2021.01.002

Previous Articles     Next Articles

Analysis on the Relationship between Fertility and Photosynthetic Characteristics in the BS Type Photo-Thermal Sensitive Male Sterile Wheat Lines under Controlled Condition

Sun Hui(), Zhang Liping, Hou Qiling, Bai Xiucheng, Yang Jifang, Zhang Fengting(), Zhao Changping()   

  1. Beijing Engineering Research Center for Hybrid Wheat, Beijng Academy of Agriculture and Forestry Sciences/Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 100097, China
  • Received:2020-05-04 Revised:2020-12-11 Online:2021-02-15 Published:2021-02-23
  • Contact: Zhang Fengting,Zhao Changping E-mail:sun_clever@sina.com;lyezh@163.com;cp_zhao@vip.sohu.com

Abstract:

BS type photo-thermal sensitive male sterile line is the core of the application of two-line hybrid wheat. Five BS type male sterile lines (BS107, BS1086, BS640, BS608, BS366) and a conventional variety (Jing411) were studied to investigate the relationship of the fertility with photosynthetic characteristics, for improving the seed production technology and the seed yield of the male sterile lines. Net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 molar fraction (Ci), transpiration rate (Tr), and maximum photochemical efficiency (Fv/Fm) were tested with photo-thermo-controlled growth chambers, and further analyzed in relation to fertility. The results showed the Pn, Gs, and Tr of BS107 were similar to those of BS1086, Gs and Ciof BS640 were similar to those of BS366, the Pn, Gs, Ci and Tr of BS608 were different from those the other sterile lines. The materials with higher Pn, Gs, Ci and Tr are BS640, and the Pn and Tr of BS1086 were higher, while Pn, Gs and Tr of BS608 were lower. Under short-day and low-temperature, seed-setting rate and Pn, Gs, Ci, Tr and Fv/Fm had no significant correlation. Under long-day and high-temperature, seed-setting rate had positive correlations with Pn, Gs and Tr. Furthermore, the most important factor affecting seed-setting rate was Gs, followed by Pn and Tr.

Key words: Wheat, Photo-thermal sensitive male sterile lines, Fertility, Photosynthetic characteristics

Table 1

The conditions of temperature treatments ℃"

时间
Time
温度Temperature
平均12℃Average 12℃ 平均16℃Average 16℃
22∶00-2∶00 7 11
2∶00-6∶00 10 14
6∶00-10∶00 14 18
10∶00-14∶00 17 21
14∶00-18∶00 14 18
18∶00-22∶00 10 14

Table 2

Seed setting rate of materials under different light and temperature conditions"

材料
Material
12h,12℃ 14h,16℃
小穗数
Number of
spikelets
穗粒数
Grain number
per spike
结实率
Seed-setting
rate (%)
小穗数
Number of
spikelets
穗粒数
Grain number
per spike
结实率
Seed-setting
rate (%)
BS107 21.00 0.00 0.00 20.27 22.68 55.94
BS1086 17.40 0.13 0.37 16.33 19.05 58.33
BS640 18.30 0.09 0.25 19.00 25.63 67.45
BS608 21.60 0.04 0.09 20.20 16.29 40.32
BS366 19.20 0.02 0.05 18.38 17.77 48.34
京411 Jing411 19.40 34.50 88.92 20.00 37.88 94.70

Table 3

Comparison of Pn of different materials μmol/(m2·s)"

光温条件Light and temperature 材料Material S1 S2 S3 S4 S5 S6
12h,12℃ BS107 17.02a 11.66c 19.30b 14.69b 13.36b 9.96a
BS1086 13.38c 15.53b 21.46a 17.90a 15.92a 9.91a
BS640 15.28b 14.41b 17.19c 17.17a 15.24a 6.83b
BS608 15.04b 17.26a 9.79e 9.23d 15.40a 7.72ab
BS366 14.72bc 16.00ab 12.69d 11.85c 13.17b 7.13b
京411 Jing411 14.20bc 14.27b 15.35c 13.66b 15.32a 8.63ab
14h,16℃ BS107 20.50a 15.78b 16.03a 14.81b 9.62c 8.39a
BS1086 16.55b 13.98c 14.99a 14.11b 10.09bc 8.28a
BS640 16.14bc 15.72b 16.16a 18.20a 13.44a 8.12a
BS608 15.13bc 9.76e 11.06c 10.92c 10.88b 7.18ab
BS366 15.76bc 12.05d 12.57b 11.85c 10.69bc 6.10bc
京411 Jing411 13.52c 18.09a 14.67a 13.78b 11.16b 5.50c

Fig.1

Comparison of Pn of different materials"

Table 4

Comparison of Gs of different materials mmol/(m2·s)"

光温条件Light and temperature 材料Material S1 S2 S3 S4 S5 S6
12h,12℃ BS107 0.17ab 0.10cd 0.17b 0.08e 0.08bc 0.12b
BS1086 0.14b 0.13b 0.19a 0.09 d 0.08bc 0.14b
BS640 0.20a 0.15a 0.16bc 0.22a 0.07c 0.20a
BS608 0.16b 0.09d 0.09 d 0.12c 0.15a 0.22a
BS366 0.16b 0.12bc 0.10 d 0.15b 0.08bc 0.13b
京411 Jing411 0.17ab 0.11c 0.14c 0.07e 0.10b 0.11b
14h,16℃ BS107 0.14b 0.20ab 0.18ab 0.08ab 0.11b 0.10ab
BS1086 0.15b 0.18b 0.16b 0.10a 0.08c 0.13a
BS640 0.18a 0.19ab 0.20a 0.10a 0.15a 0.11ab
BS608 0.08e 0.10c 0.12c 0.06b 0.12b 0.07c
BS366 0.12c 0.13c 0.15bc 0.06b 0.12b 0.09bc
京411 Jing411 0.10d 0.22a 0.16b 0.07ab 0.13ab 0.07c

Fig.2

Comparison of Gs of different materials"

Table 5

Comparison of Ci of different materials μmol/mol"

光温条件Light and temperature 材料Material S1 S2 S3 S4 S5 S6
12h,12℃ BS107 182.09e 171.67b 163.71bc 64.99e 91.30c 221.46d
BS1086 191.88d 154.67c 163.50bc 76.59d 48.41d 238.52c
BS640 222.03a 199.06a 175.16a 232.22a 17.73e 307.65a
BS608 180.21e 41.76e 176.60a 200.21c 195.65a 298.73a
BS366 200.91c 142.74d 157.48c 217.96b 94.76c 265.10b
京411 Jing411 214.64b 148.31cd 166.13b 55.55f 110.99b 223.25d
14h,16℃ BS107 108.57f 228.57a 211.47bc 44.11e 215.68ab 219.74d
BS1086 164.83c 232.63a 205.42c 102.34a 164.41c 253.11a
BS640 208.11a 208.20b 223.59a 53.46d 213.81ab 244.72b
BS608 172.33b 203.09b 210.30c 89.87b 164.89c 240.71b
BS366 140.33d 192.90c 219.87ab 40.66e 209.33b 253.67a
京411 Jing411 119.98e 224.78a 202.04c 65.00c 221.55a 229.12c

Fig.3

Comparison of Ci of different materials"

Table 6

Comparison of Tr of different materials mmol/(m2·s)"

光温条件Light and temperature 材料Material S1 S2 S3 S4 S5 S6
12h,12℃ BS107 4.96a 2.65b 4.17b 1.09e 1.04e 3.16b
BS1086 4.73a 2.52b 4.91a 1.23d 1.24d 2.86b
BS640 3.54c 3.44a 2.51c 2.90a 1.08e 3.62a
BS608 3.11d 0.76e 1.75d 2.37b 2.40a 3.77a
BS366 3.64bc 1.98c 1.64d 2.00c 1.57b 2.32c
京411 Jing411 3.92b 1.46d 4.73a 1.16de 1.43c 3.14b
14h,16℃ BS107 4.55a 3.93c 4.27ab 1.09b 2.14b 2.92b
BS1086 3.41c 3.59d 4.16b 1.22a 1.81c 3.61a
BS640 2.88d 4.23b 4.42a 1.12b 2.84a 2.92b
BS608 2.42e 1.67 f 1.75e 0.55e 1.19d 2.06c
BS366 3.35c 3.07e 2.68d 0.63d 1.94c 2.17c
京411 Jing411 4.02b 4.51a 3.56c 1.03c 2.78a 3.07b

Fig.4

Comparison of Tr of different materials"

Table 7

Comparison of Fv/Fm of different materials"

光温条件Light and temperature 材料Material S1 S2 S3 S4 S5 S6
12h,12℃ BS107 0.80ab 0.81a 0.80a 0.79a 0.76a 0.72ab
BS1086 0.80ab 0.80a 0.80a 0.79a 0.77a 0.73ab
BS640 0.80ab 0.80a 0.80a 0.80a 0.76a 0.70b
BS608 0.81a 0.81a 0.81a 0.80a 0.77a 0.73ab
BS366 0.80ab 0.80a 0.80a 0.79a 0.78a 0.73ab
京411 Jing411 0.79b 0.80a 0.80a 0.80a 0.76a 0.74a
14h,16℃ BS107 0.81ab 0.81a 0.80a 0.78a 0.77bc 0.71c
BS1086 0.82a 0.82a 0.79a 0.79a 0.78b 0.73ab
BS640 0.81ab 0.80a 0.80a 0.79a 0.77bc 0.72bc
BS608 0.81ab 0.81a 0.80a 0.79a 0.78b 0.73ab
BS366 0.81ab 0.80a 0.78a 0.78a 0.80a 0.75a
京411 Jing411 0.80b 0.80a 0.78a 0.77a 0.76c 0.74a

Table 8

Correlation coefficients between seed-setting rate and photosynthetic factors of male sterile lines"

项目Item 时期Period Pn Gs Ci Tr Fv/Fm
短日低温结实率 S1 -0.765 -0.146 -0.406 -0.117 -0.226
Seed-setting rate under short photoperiods S2 -0.249 -0.683 -0.271 -0.385 -0.636
and low temperature S3 -0.517 -0.567 -0.180 -0.449 -0.226
S4 -0.702 -0.181 -0.102 -0.076 -0.107
S5 -0.819 -0.265 -0.565 -0.263 -0.093
S6 -0.118 -0.180 -0.128 -0.076 -0.177
长日高温结实率 S1 -0.297 -0.994** -0.335 -0.240 -0.231
Seed-setting rate under long photoperiods S2 -0.906* -0.881* -0.430 -0.932* -0.098
and high temperature S3 -0.923* -0.946* -0.342 -0.932* -0.196
S4 -0.964* -0.903* -0.205 -0.870* -0.172
S5 -0.486 -0.206 -0.451 -0.905* -0.530
S6 -0.643 -0.796 -0.012 -0.731 -0.469
[1] Li Y F, Zhao C P, Zhang F T, et al. Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica, 2006,151:207-213.
doi: 10.1007/s10681-006-9141-4
[2] 孙辉, 张风廷, 王永波, 等. 雄性不育小麦BS210育性转换特性. 作物学报, 2017,43(2):171-178.
[3] 赵昌平. 中国杂交小麦研究现状与趋势. 中国农业科技导报, 2010,12(2):5-8.
[4] 王丽芳, 徐宣斌, 王德轩, 等. 大穗型小麦产量形成过程中光合特性的动态变化. 应用生态学报, 2012,23(7):1846-1852.
[5] 曹树青, 赵永强, 温家立, 等. 高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究. 中国农业科学, 2000,33(6):19-25.
[6] 牛立元, 茹振钢. 小麦旗叶光合生产力环境限制因子研究. 华北农学报, 2004,19(2):49-52.
doi: 10.3321/j.issn:1000-7091.2004.02.013
[7] 孟庆伟, 赵世杰, 许长成, 等. 田间小麦叶片光合作用的光抑制和光呼吸的防御作用. 作物学报, 1996,22(4):470-475.
[8] 赵会杰, 杨会民. 小麦新品种豫麦 39号灌浆期生理特性的研究. 华北农学报, 1998,13(2):6-10.
doi: 10.3321/j.issn:1000-7091.1998.02.002
[9] 谭彩霞, 封超年, 郭文善, 等. 不同品质类型小麦旗叶光合特性及其与产量的相关性研究. 扬州大学学报, 2019,40(6):30-34.
[10] Caemmerer S, Evans J R. Enhancing C3 photosynthesis. Plant Physiology, 2010,154(2):589-592.
pmid: 20921190
[11] Long S P, Zhu X G, Naidu S L, et al. Can improvement in photosynthesis increase crop yields. Plant Cell Environment, 2006,29:315-330.
[12] Parry M A, Reynolds M, Salvucci M E, et al. Raising yield potential of wheat.Ⅱ:increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 2011,62:453-467.
doi: 10.1093/jxb/erq304 pmid: 21030385
[13] 谢枫, 吴跃进, 杨阳, 等. 不同小麦品种籽粒产量对低氮胁迫的响应及其与旗叶光合特性的关系. 生物学杂志, 2018,35(6):42-46.
[14] 丁位华, 陈向东, 冯素伟, 等. 黄淮麦区若干高产小麦品种穗光合性能及产量性状的研究. 华北农学报, 2016,31(5):134-139.
doi: 10.7668/hbnxb.2016.05.020
[15] 王义芹, 杨兴洪, 李滨, 等. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008,23(22):10-15.
[16] 张黎萍, 荆奇, 戴廷波, 等. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008,19(2):311-316.
[17] 李常英, 张金凤, 丁美丽, 等. 遮光强度对小麦叶片光合特性及生理代谢特征的影响. 山西农业大学学报, 2019,39(6):1-7.
[18] 郭明明, 赵广才, 郭文善, 等. 播期对不同筋型小麦旗叶光合及籽粒灌浆特性的影响. 麦类作物学报, 2015,35(2):192-197.
[19] 赵竹, 曹承富, 乔玉强, 等. 机播条件下行距与密度对小麦产量和品质的影响. 麦类作物学报, 2011,31(4):714-719.
doi: 10.7606/j.issn.1009-1041.2011.04.023
[20] 吴安昌, 黄正来, 吴延华. 追氮时期对不同小麦品种光合特性和产量的影响. 麦类作物学报, 2010,30(2):342-345.
doi: 10.7606/j.issn.1009-1041.2010.02.028
[21] Ya S, Tian C, Guo L, et al. Genetic analysis of photo-thermo partially sensitive male sterile lines of PTS wheat. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2003,3:47-50.
[22] 孙辉, 张立平, 陈兆波, 等. BS型小麦光温敏雄性不育系光合特性研究. 麦类作物学报, 2020,40(1):86-95.
[23] 焦健, 高庆荣, 王大伟, 等. 不同小麦雄性不育类型光合速率的影响因子分析. 中国农业科学, 2008,41(6):1622-1629.
[24] 卓武燕, 张正茂, 刘苗苗, 等. 不同类型小麦光合特性及农艺性状的差异. 西北农业学报, 2016,25(4):538-546.
[25] Hirao K, Kubota F, Agata W. Evaluation of the heterosis on leaf photosynthesis of remote-cross F1 rice (Oryza saliva L.). Journal of Agronomy and Crop Science, 1995,175(4):265-270.
doi: 10.1111/j.1439-037X.1995.tb00220.x
[26] Pham C V, Murayama S, Kawamitsu Y, et al. Heterosis for photosynthetic and morphological characters in F1 hybrid rice from a thermo-sensitive genic male sterile line at different growth stages. Japanese Journal of Tropical Agriculture, 2004,48(3):137-148.
[27] 董德坤, 师恺, 曹家树. 芸薹属两个亚种间杂种光合作用优势及其机理. 中国农业科学, 2007,40(12):2804-2810.
[28] 张笑寒, 赵德刚, 何友勋, 等. 杂交水稻毕粳优210及其亲本光合特性研究. 云南农业大学学报, 2016,31(3):381-386.
[1] Jia Zimiao, Qiu Yuliang, Lin Zhishan, Wang Ke, Ye Xingguo. Research Progress on Wheat Improvement by Using Desirable Genes from Its Relative Species [J]. Crops, 2021, 37(2): 1-14.
[2] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[3] Yang Chongqing, Chang Keqin, Mu Lanhai, Du Yanping, Zhang Jiupan, Li Yaodong, Zhang Xiaojuan. Status and Trend Analysis of Buckwheat Variety Improvement and Industrial Development [J]. Crops, 2021, 37(2): 28-34.
[4] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[5] Wang Yujiao, Cao Qi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions [J]. Crops, 2021, 37(2): 96-100.
[6] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[7] An Juanhua, Dong Xin, Wang Kejian, He Zhenxue. Study on the Classification of Wheat Grain Quality Based on GWO Optimized SVM [J]. Crops, 2021, 37(1): 200-206.
[8] Wang Liming, Kong Weiwei, Gao Huali, Dong Puhui, Yan Xuefang, Wang Chunping, Wang Honggang, Li Xingfeng. Allelic Variations of Lipoxygenase (LOX) Activity Genes on Chromosome 4B and Distributions in Different Wheat Regions of China [J]. Crops, 2021, 37(1): 32-37.
[9] Ma Mingchuan, Liu Longlong, Liu Zhang, Zhou Jianping, Nan Chenghu, Zhang Lijun. Analysis of SSR Loci in Whole Genome and Development of Molecular Markers in Tartary Buckwheat [J]. Crops, 2021, 37(1): 38-46.
[10] Wang Qi, Sun Wen, Wu Junying, Liu Jinghui, Zhao Baoping. Effects of Different Irrigation Amounts and Spraying Humic Acid on Photosynthetic Characteristics and Yield of Oat [J]. Crops, 2021, 37(1): 98-103.
[11] Wang Huiwen, Li Lei, Yu Shaobo, Wang Qiang, Feng Yu, Ren Aixia, Lin Wen, Sun Min, Gao Zhiqiang. Contribution of Deep Ploughing and Furrow Sowing to Yield and Its Formation of Dryland Wheat [J]. Crops, 2020, 36(6): 116-122.
[12] Guo Dandan, Liu Zhewen, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Nitrogen Application on Yield and Quality of Wheat with Different Gluten Types [J]. Crops, 2020, 36(6): 158-162.
[13] Zhu Tongquan, Song Quanhao, Meng Xiangfeng. Influences of Various Growth Factors on Yield and Grain Quality in Wheat——Taking Zhumadian’s Wheat Production in the Past Ten Years as Example [J]. Crops, 2020, 36(6): 80-88.
[14] Huang Shaohui, Yang Junfang, Liu Xuetong, Yang Yunma, Xing Suli, Han Baowen, Liu Mengchao, Jia Liangliang, He Ping. Effects of Wheat Long-Term Straw Returning on Soil Phosphorus Content and Phosphorus Balance in Loamy Tidal Soil [J]. Crops, 2020, 36(6): 89-96.
[15] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures[J]. Crops, 2018, 34(4): 161 -166 .
[4] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[5] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province[J]. Crops, 2018, 34(4): 28 -31 .
[6] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[7] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean[J]. Crops, 2018, 34(1): 141 -146 .
[8] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves[J]. Crops, 2018, 34(1): 35 -40 .
[9] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum[J]. Crops, 2018, 34(1): 56 -61 .
[10] Jie Wang,Bo Zeng,Cailin Lei,Zhichao Zhao,Jiulin Wang,Zhijun Cheng. Variety Analysis of Northern Rice Regional Trials in Recent 15 Years[J]. Crops, 2018, 34(1): 71 -76 .