Crops ›› 2021, Vol. 37 ›› Issue (2): 108-115.doi: 10.16035/j.issn.1001-7283.2021.02.015

;

Previous Articles     Next Articles

Effects of Nitrogen Fertilization on Yield, Quality and Nitrogen Utilization Efficiency of Sorghum

Cao Xiaoyan1, Wu Ailian2, Wang Jinsong2, Dong Erwei2, Jiao Xiaoyan2()   

  1. 1College of Bioengineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Resources and Environment, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taiyuan 030031, Shanxi, China
  • Received:2020-11-20 Revised:2021-02-05 Online:2021-04-15 Published:2021-04-16
  • Contact: Jiao Xiaoyan E-mail:xiaoyan_jiao@126.com;1289561127@qq.com

Abstract:

To establish the nitrogen management practice for grain sorghum, a pot experiment was conducted to investigate the effects of nitrogen application rate on its growth, grain yield and quality, N accumulation and translocation. Less fertile air-dried soil was selected with six nitrogen levels, 0 (N0), 0.05 (N1), 0.1 (N2), 0.2 (N3), 0.4 (N4), and 0.6 (N5) g/kg. The results showed that dry matter accumulation, leaf SPAD value, grain yield, number of grains per panicle, and harvest index under N3 treatment were significantly higher than those under N0 and N5 treatments. The starch content in N3 treatment was lower than that in N1 treatment, but the starch yield of N3 was the highest. With the increase of nitrogen fertilization, the grain tannin content decreased and protein content increased, and the total protein output was the highest in N3 and N4. High NO3--N concentration of leaf sheath was induced by high N fertilization intensity. It is worthy of mentioning that NO3--N concentration of leaf sheath of N3 treatment was significantly higher than those of N0, N1, and N2 at flag leaf and anthesis stages. However, there was a similar value of NO3--N concentration of leaf sheath for these four treatments at filling stage. N3 treatment induced the highest percentage of N translocation from shoot to grain, which was 76.76%. In conclusion, appropriate nitrogen fertilization was beneficial to the growth and yield of sorghum, and increased NO3--N accumulation in leaf sheath at the early stage of growth, which could coordinate the relationship between grain yield and functional components and obtain higher total starch and protein yield.

Key words: Sorghum, N fertilization rate, Grain yield, Starch content and yield, N use efficiency, N translocation

Fig.1

Effects of N fertilization on dry matter accumulation in sorghum"

Fig.2

Effects of N fertilization on leaf area per plant and SPAD in sorghum Different lowercase letters indicate significant difference at 0.05 level, the same below"

Table 1

Effects of N fertilization on grain yield and harvest index of sorghum"

处理Treatment 千粒重
1000-grain
weight (g)
穗粒数
Grains number
per panicle
籽粒产量(g/盆)
Grain yield
(g/pot)
收获指数
Harvest
index (%)
N0 16.82±0.28c 113.12±3.08c 5.70±0.11c 27.57±0.59c
N1 21.98±0.32b 354.41±11.18b 23.35±0.47b 45.50±0.43a
N2 22.60±2.04b 448.99±25.52a 29.60±0.79b 47.42±0.70a
N3 22.23±1.35b 545.10±37.34a 34.21±0.81a 49.51±0.78a
N4 28.80±0.46a 366.50±13.95b 31.64±1.11b 44.57±0.01a
N5 23.76±0.43b 296.60±9.54b 21.12±0.54b 42.25±1.17b

Table 2

Effects of N fertilization on quality of grain yield of sorghum"

处理
Treatment
单宁
Tannic
(g/kg)
淀粉Starch 蛋白质Protein
含量(%)
Content
单籽粒产量
Production per
grain (mg)
总产量(g/盆)
Total production
(g/pot)
含量(%)
Content
单籽粒产量
Production per
grain (mg)
总产量(g/盆)
Total production
(g/pot)
N0 16.5±0.1a 69.6±0.4b 11.8±0.2d 4.0±0.1e 6.3±0.1d 1.2±0.0e 0.4±0.0e
N1 15.3±0.4ab 73.7±0.2a 16.2±0.2b 17.2±0.4b 6.2±0.2d 1.4±0.0de 1.4±0.0d
N2 15.2±0.9ab 71.3±0.1b 14.5±0.7cd 21.1±0.6a 8.0±0.1c 1.6±0.1d 2.4±0.1c
N3 14.2±0.8ab 67.6±0.6c 14.4±1.2cd 23.1±0.7a 11.7±0.1b 2.5±0.2c 4.0±0.1a
N4 12.9±0.1b 67.0±0.7c 19.3±0.4a 21.2±0.7a 12.8±0.2a 3.7±0.1a 4.0±0.1a
N5 14.5±0.2ab 66.4±0.2c 15.8±0.3c 14.0±0.3c 13.2±0.3a 3.1±0.1b 2.8±0.1b

Table 3

Effects of N fertilization on NO3—N concentration in leaf sheaths mg/kg"

处理
Treatment
挑旗期
Flag leaf stage
穗花期
Anthesis stage
灌浆期
Grain filling stage
N0 46.3±4.7c 27.5±6.1c 56.3±8.8b
N1 34.5±0.5c 25.0±2.0c 29.6±1.3b
N2 63.2±29.8c 36.8±1.0c 30.3±0.7b
N3 1903.3±322.0bc 756.3±62.7b 45.9±3.7b
N4 2878.5±656.2ab 3772.6±602.7a 2800.0±271.4a
N5 4197.4±828.5a 4343.2±310.5a 6804.4±119.6a

Table 4

Effects of N fertilization on N concentration in different parts of sorghum g/kg"

处理
Treatment
穗花期Anthesis stage 收获期Harvest stage
茎叶Shoot 花穗Panicle 茎叶Shoot 籽粒Grain 穗芯Inflorenscence
N0 5.35±0.10d 10.40±0.43c 3.59±0.07d 10.93±0.21c 4.17±0.25c
N1 6.92±0.18d 12.30±0.11b 3.73±0.16d 9.87±0.25c 3.41±0.07c
N2 9.36±0.13c 14.53±0.27a 4.22±0.11d 12.85±0.13c 3.80±0.35c
N3 13.98±0.77b 15.93±0.74a 5.32±0.22c 18.75±0.21b 5.51±0.05b
N4 15.33±0.31ab 15.30±0.64a 8.71±0.25b 20.40±0.30ab 6.11±0.24ab
N5 16.05±0.31a 15.20±0.41a 12.10±0.47a 21.13±0.50a 6.86±0.20a

Fig.3

Effects of N fertilization on nitrogen accumulation in different positions"

Table 5

Effects of N fertilization on N translocation from leaf and stem to grain"

处理
Treatment
N转运量
(mg/盆)
N translocation
(mg/pot)
转运N占
籽粒N比例
Proportion of N translocation to grain (%)
营养器官
氮转运率
N translocation
rate of source-
sink (%)
N0 31.59±0.62c 49.89±0.58b 39.70±0.76c
N1 155.09±11.96b 67.48±5.47ab 63.33±1.22b
N2 272.55±11.74b 71.60±1.67a 70.40±0.49ab
N3 490.11±32.08a 76.45±4.79a 76.76±0.86a
N4 470.19±44.33a 72.54±5.30a 61.09±1.93ab
N5 235.29±32.22b 52.16±5.18b 44.12±4.86c

Table 6

Effects of N fertilization on N utilization efficiency"

处理
Treatment
氮利用效率
N utilization
efficiency (%)
氮偏生产力
Partial productivity
of N fertilizer (g/g)
氮生理利用效率
Physiological N
use efficiency (g/g)
N0 - 49.2±1.1c -
N1 49.5±0.7a 70.0±0.8a 81.4±1.1a
N2 45.8±1.4a 57.3±0.4b 59.7±0.5b
N3 40.8±0.8b 39.6±2.1d 40.0±0.7c
N4 24.6±0.9c 32.5±0.2e 30.1±0.3d
N5 12.5±0.3d 27.4±0.8f 23.4±0.9e

Fig.4

The response of grain starch content, grain yield and starch yield to the nitrogen content of shoot"

Fig.5

Response of grain starch content, grain yield and starch yield to nitrate content in leaf sheath"

Table 7

Relationship between grain yield, starch content and starch yield with N concentration in shoots"

生育期Growth stage 指标Index 响应曲线Regression equation 决定系数Coefficient of determination (R2) P
花期Anthesis 籽粒产量 y=-63.33x2+152.12x-55.35 0.849 0.000
籽粒淀粉含量 y=24.06x3-86.42x2+91.78x+42.27 0.854 0.000
淀粉产量 y=-46.49x2+109.81x-39.60 0.838 0.000
收获期Harvest 籽粒产量 y=229.77x3-643.40x2+548.42x-109.09 0.652 0.000
籽粒淀粉含量 y=-21.46x3+63.69x2-62.44x+87.00 0.626 0.000
淀粉产量 y=154.57x3-430.78x2+364.46x-71.14 0.585 0.000

Table 8

Relationship between grain yield, starch content and starch yield with NO3--N concentration in leaf sheaths"

生育期Growth stage 指标Index 响应曲线Regression equation 决定系数Coefficient of determination (R2) P
拔节期Booting 籽粒产量 y=9.88x0.13 0.211 0.024
籽粒淀粉含量 y=-1.21E-10x3+1.41E-6x2-0.005x+71.78 0.724 0.000
淀粉产量 y=7.49x0.12 0.166 0.048
花期Anthesis 籽粒产量 y=11.00x0.12 0.197 0.030
籽粒淀粉含量 y=75.03x0.02 0.720 0.000
淀粉产量 y=8.25x0.10 0.153 0.058
灌浆期Filling 籽粒产量(y) y=17.27x0.04 0.021 0.494
籽粒淀粉含量(y) y=73.88x0.01 0.523 0.000
淀粉产量(y) y=12.76x0.03 0.010 0.640
[1] Good A G, Sharwat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production. Trends in Plant Science, 2004,9(12):597-605.
[2] 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析. 植物营养与肥料学报, 2017,23(6):1416-1432.
[3] 唐文雪, 马忠明, 王景才. 施氮量对旱地全膜双垄沟播玉米田土壤硝态氮、产量和氮肥利用率的影响. 干旱地区农业研究, 2015,33(6):58-63.
[4] Tilman D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(11):5995-6000.
[5] Peoples M B, Freney J R, Mosier A R. Minimizing gaseous losses of nitrogen// Nitrogen Fertilization in Environment, 1995: 565-607.
[6] Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science, 2001,292(5515):281-284.
[7] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20(4):783-795.
[8] Beillouin D, Trépos R, Gauffreteau A, et al. Delayed and reduced nitrogen fertilization strategies decrease nitrogen losses while still achieving high yields and high grain quality in malting barley. European Journal of Agronomy, 2018,101:174-182.
[9] Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development. Nature, 2015,528(7580):51-59.
[10] Leiser W L, Rattunde H F, Piepho H P, et al. Getting the most out of sorghum low-input field trials in west Africa using spatial adjustment. Journal of Agronomy and Crop Science, 2012,198(5):349-359.
[11] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009,42(7):2342-2348.
[12] Hernlem B J, Ravva S V. Application of flow cytometry and cell sorting to the bacterial analysis of environmental aerosol samples. Journal of Environmental Monitoring, 2007,9(12):1317-1322.
[13] Subbarao G V, Nakahara K, Ishikawa T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil, 2008,313:89-99.
[14] Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl) propionate,responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008,180(2):442-451.
[15] 王劲松, 董二伟, 武爱莲, 等. 灌溉时期与施氮量对矮秆高粱产量和品质的影响. 灌溉排水学报, 2017,36(S2):1-8.
[16] 刘鹏, 武爱莲, 王劲松, 等. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018,51(16):3074-3083.
[17] 朱艳, 姚霞, 田永超, 等. 小麦氮素积累动态的高光谱监测. 中国农业科学, 2008,41(7):1937-1946.
[18] 刘东军, 张宏纪, 孙岩, 等. 氮肥对小麦氮积累和分配及氮肥利用率影响的研究进展. 黑龙江农业科学, 2017(11):93-100.
[19] 王劲松, 董二伟, 武爱莲, 等. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019,52(22):4166-4176.
[20] Worland B, Nicole R, David J, et al. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor. Journal of Plant Physiology, 2017,9(216):118-124.
[21] Scheible W R, Gonzalezfontes A, Lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 1997,9(5):783-798.
[22] Zhang S S, Yue S C, Yan P, et al. Testing the suitability of the end-of-season stalk nitrate test for summer corn (Zea mays L.) production in China. Field Crops Research, 2003,154:153-157.
[23] 徐琢频. 作物单籽粒近红外快速无损检测的模型转移方法研究. 合肥:中国科学技术大学, 2020.
[24] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 高粱单宁含量的测定: GB/T 15686-2008.
[25] Gaju O, Allard V, Martre P, et al. Nitrogen partitioning and remobilization in relation to leaf senescence,grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2013,155:213-223.
[26] 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49(12):2267-2279.
[27] 曾建敏, 崔克辉, 黄见良, 等. 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007,33(7):1168-1176.
[28] 江东国, 黄正来, 张文静, 等. 晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响. 麦类作物学报, 2019,39(10):1211-1221.
[29] Takei K, Ueda N, Aoki K. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiology, 2004,45(8):1053-1062.
[30] Elizabeth J P, Jiancheng S. Cytokinin:a key driver of seed yield. Journal of Experimental Botany, 2015(3):593-606.
[31] 熊淑萍, 王静, 王小纯, 等. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014,38(7):767-775.
[32] 王尊欣. 水稻籽粒矿质营养品质的氮素调控效应研究. 南京:南京农业大学, 2018.
[33] Schiltz S, Munier J N, Jeudy C, et al. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiology, 2005,137(4):1463-1473.
[34] Pommel B, Gallais A, Coque M, et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. European Journal of Agronomy, 2006,24(3):203-211.
[35] Delhon P, Gojon A, Tillard P, et al. Diurnal regulation of NO3- uptake in soybean plants I. Changes in NO3- influx,efflux,and N utilizationin the plant during the day/night cycle. Journal of Experimental Botany, 1995,46(10):1585-1594.
[36] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 2009,11(9):440-448.
[37] 梁喜龙, 邱凯华, 何瑞, 等. 植物籽粒建成的调控与细胞分裂素. 植物生理学报, 2020,56(4):635-642.
[38] 邹京南, 于奇, 金喜军, 等. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020,46(5):745-758.
[39] 张立华, 林益明, 叶功富, 等. 环境因素对植物单宁形成的影响. 鲁东大学学报(自然科学版), 2010,26(4):366-372.
[1] Wang Jiaxu, Zhang Fei, Zhang Kuangye, Ke Fulai, Wang Yanqiu, Lu Feng, Zhu Kai. Effects of Reducing Nitrogen Fertilizers and Increasing DMPP on Nitrogen Absorption and Utilization in Sorghum [J]. Crops, 2024, 40(1): 126-131.
[2] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[3] Wang Haitao, Ren Chunmei, Dong Yan, Li Shuo, Cheng Zhaobang, Ji Yinghua. Molecular Detection and Identification of Maize Yellow Mosaic Virus on Sorghum in Huai’an, Jiangsu [J]. Crops, 2024, 40(1): 233-238.
[4] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[5] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[6] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[7] Zhang Fuyao, Ping Jun’ai, Jiao Xiaoyan. Research Status and Prospects of Barren Tolerance and Nutrient Efficient Utilization in Sorghum [J]. Crops, 2023, 39(6): 26-34.
[8] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[9] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[10] Hu Rui, Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua. Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization [J]. Crops, 2023, 39(5): 179-186.
[11] Chen Bingru, Yu Miao, Shi Guishan, Wang Jianghong, Tang Yujie, Xu Chen, Li Haiqing, Xu Ning, Zhou Ziyang, Wang Nai. Breeding and Application of Elite Waxy Sorghum Male Sterile Line “Ji 5535A” [J]. Crops, 2023, 39(4): 260-266.
[12] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[13] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[14] Xiao Jibing, Liu Zhi, Kong Fanxin, Xin Zongxu, Wu Hongsheng. Analysis of Agronomic Traits and Yield Stability of Sorghum Varieties Based on GGE Biplot [J]. Crops, 2023, 39(2): 36-45.
[15] Wang Qi, Xu Yanli, Yan Peng, Dong Haosheng, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of Polyaspartic Acid-Chitosan on Agronomic Traits, Yield and Nitrogen Use of Spring Foxtail Millet [J]. Crops, 2023, 39(1): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!