Crops ›› 2021, Vol. 37 ›› Issue (2): 35-44.doi: 10.16035/j.issn.1001-7283.2021.02.005

;

Previous Articles     Next Articles

Genome-Wide Identification and Characteristic Analyzation of the TCP Transcription Factors Family in Peanut

Wang Tong1(), Zhao Xiaodong2, Zhen Pingping3, Chen Jing1, Chen Mingna1, Chen Na1, Pan Lijuan1, Wang Mian1, Xu Jing1, Yu Shanlin1, Chi Xiaoyuan1(), Zhang Jiancheng1()   

  1. 1Shandong Peanut Research Institute/Key Laboratary of Peanut Biology and Genetic Improvement of Ministry of Agriculture and Rural Affairs, Qingdao 266100, Shandong, China
    2Linyi Academy of Agricultural Sciences, Linyi 276012, Shandong, China
    3Agriculture and Rural Bureau of Linyi County, Dezhou 251500, Shandong, China
  • Received:2020-07-23 Revised:2020-10-27 Online:2021-04-15 Published:2021-04-16
  • Contact: Chi Xiaoyuan,Zhang Jiancheng E-mail:wtwtp@126.com;chi000@126.com;13863920622@163.com

Abstract:

The transcription factor TCPs is very important and plays multiple roles in plants, which is involved in the regulation of plant growth throughout the whole development stage, especially in flower organs and meristem. However, no information on this gene family in peanut was reported. The objective of this study is to identify and characterize the peanut TCP family genes, and to provide a basis for studying the theoretical roles of TCP genes in the regulation of peanut growth and development, and also to provide valuable information for TCP genes cloning in peanut. The TCP family genes were identified from peanut genome through bioinformatics methods, and the chromosomal location, phylogenetic evolution, gene structure, conserved motif and gene expression patterns of peanut TCP genes were analyzed. Results showed that 19 and 32 peanut TCP genes were identified in nine wild species chromosomes and 14 cultivar chromosomes, respectively. Phylogenetic analysis displayed the 51 peanut TCP genes could be divided into two subclasses: classⅠ(PCF) and classⅡ, furthermore, the classⅡ was divided into two clades: CIN and CYC/TB1. These genes all contained highly conserved bHLH domains, but their intron structures were quite different. The number and length of introns in these genes were largely related to the phylogenetic evolution. Genes in classⅠ had less introns, nevertheless the number of introns was much more in classⅡ, and there were many differences of intron length between class I and classⅡ. Moreover, the expression profile of peanut TCP family genes showed that only seven genes were differentially expressed in tissues, and six of which were related to meristems and flowers. It is suggested that these genes could play important roles in the growth and development of peanut stems tips and flowers.

Key words: Peanut, TCP transcription factor, Whole-gene identification, Gene expression

Table 1

The information of TCP family genes in peanut"

基因编号
Code No.
氨基酸数
Amino acid number
分子量
Molecular mass (kD)
等电点
pI
染色体位置
Chromosome location (bp)
亚细胞定位
Subcellular location
外显子数
Exon number
Du1RN6D 84 9.94 10.94 A01: 38362763-38364266(+) 高尔基体 3
Du31JVP 149 15.88 8.67 A02: 93698897-93699375(+) 细胞核 2
DuJKM1G 139 14.92 10.16 A03: 1146898-1147314(+) 细胞核 1
Du3K3P7 431 46.58 8.32 A03: 26177414-26179364(-) 叶绿体 5
Du6M9JS 457 47.01 7.10 A04: 2833799-2835169(+) 细胞核 1
Du6MF1G 396 43.94 8.96 A04: 120573975-120575319(-) 叶绿体 3
DuJ06JT 333 36.36 6.55 A08: 32597179-32599158(-) 细胞核 3
Du0YU93 298 32.59 8.37 A10: 102683116-102684850(+) 细胞核 5
DuD4D3B 430 47.20 9.71 A10: 105227329-105229071(+) 细胞核 3
DuPG28A 164 18.21 10.46 A04: 119147168-119149150(+) 细胞核 3
IpH57JT 128 14.49 10.06 B01: 46465219-46466868(+) 细胞核 5
IpX255Z 140 15.04 10.35 B03: 3045361-3045780(+) 细胞核 1
IpY6QYT 284 31.38 9.05 B03: 23558367-23559380(-) 叶绿体 2
Ip4Z7UA 425 45.80 6.84 B03: 29032433-29034246(-) 细胞核 4
IpY5APX 456 47.15 7.14 B04: 4092175-4093542(+) 叶绿体 1
IpTU4HL 390 42.88 9.43 B04: 130737935-130739655(-) 细胞核 3
IpZ17TF 313 34.06 6.60 B08: 11054251-11056427(-) 细胞核 3
IpEDM7N 256 29.06 9.92 B10: 121980287-121981189(-) 细胞核 2
IpLUF2N 427 46.80 9.62 B10: 131879700-131881139(+) 细胞核 2
Hy3CY5UQ.1 244 27.51 10.53 1: 40133651-40137664(+) 细胞质和细胞核 6
Hy5LBE6G.1 477 53.18 7.54 1: 108380381-108382890(+) 细胞核 2
Hy6V3SWS.1 438 47.46 7.72 1: 111396243-111397559(+) 细胞核 1
HyNAZY29.1 138 14.94 10.16 3: 1322159-1322575(+) 细胞核 1
Hy7QL5S6.1 645 70.83 7.31 3: 28296178-28298188(-) 细胞核 2
HyJF9204.1 466 51.69 8.61 3: 141164292-141170983(-) 细胞核 4
HyJF9204.2 471 52.12 8.29 3: 141167176-141170983(-) 细胞核 1
HyABQ1RQ.1 496 51.40 7.35 4: 2968102-2969592(+) 细胞核 1
Hy47Q1NW.1 456 50.28 8.27 4: 126017493-126020268(-) 细胞核 3
HyXF5UIG.1 393 42.71 6.85 6: 101537588-101541638(-) 细胞核 6
HyD15RR9.1 352 38.54 6.63 8: 34637022-34640267(-) 细胞核 3
HyCX086V.1 448 47.76 8.94 9: 109849678-109852244(+) 细胞核 3
HyDG8AQJ.1 434 48.52 6.83 9: 110621159-110623060(-) 细胞核 4
HyU9727D.1 432 47.83 9.79 10: 105064759-105066057(-) 细胞核 1
HyN9U68C.1 351 38.55 8.92 10: 110274281-110276042(+) 细胞核 3
Hy18WYEQ.1 428 46.74 9.47 10: 112845226-112847602(+) 叶绿体 3
HyQ9YRAB.1 439 47.58 7.72 11: 123697432-123698751(-) 细胞核 1
HyM1TALC.1 131 14.16 10.16 13: 3108557-3109882(+) 细胞核 2
HyT0E7SC.1 658 72.68 6.73 13: 30175294-30177526(-) 细胞核 2
HyQI2904.1 469 52.34 8.09 13: 45539292-45541730(-) 细胞核 2
HyUL2QPJ.1 583 64.76 8.31 13: 144071693-144077814(-) 细胞核 6
HyUL2QPJ.2 457 50.64 9.21 13: 144072664-144077814(-) 细胞核 1
Hy22FU97.1 495 51.47 7.38 14: 4287692-4289179(+) 细胞核 1
HyQ1RL33.1 471 51.37 8.27 14: 140464278-140466478(-) 细胞核 3
HyKNN8RN.1 363 39.33 6.61 16: 132806525-132807987(-) 细胞核 4
HyQ2VML3.1 168 17.96 4.99 18: 4831951-4833441(-) 细胞核 2
Hy6TI82F.1 352 38.53 6.63 18: 12213609-12216824(-) 细胞核 3
HyI9FULJ.1 151 16.61 9.22 18: 47354288-47354743(+) 细胞核 1
HyW24P9U.1 266 27.84 10.39 19: 153036959-153037759(-) 细胞核 1
Hy5684ZR.1 379 39.72 6.11 19: 157994787-157997637(+) 细胞核 2
HyTU0X8W.1 410 45.48 6.82 19: 157353782-157355014(+) 细胞核 1
Hy46V6T7.1 428 46.70 9.34 20: 139422745-139425095(+) 叶绿体 3

Fig.1

Chromosome distribution of TCP family genes in wild (a) and cultivated (b) peanut"

Fig.2

Phylogenetic relationship and subgroup classification of peanut and rice TCP family proteins The curved lines with black, blue and green indicate the PCF, CYC/TB1 and CIN clade, respectively; Du represents Arachis duranensis, Ip represents Arachis ipaensis, Hy represents Arachis hypogaea. The same below"

Fig.3

Evolutionary tree and gene structure analysis of peanut TCP family genes Black is PCF clade, blue is CYC/TB1 clade, green is CIN clade"

Fig.4

Bioinformatics analysis of conserved domains of peanut TCP family proteins (a) is the multiple sequence alignment of 51 TCP proteins bHLH domain; (b) is motif logo of TCP conserved domains"

Fig.5

Tissues expression profiles of peanut TCP family genes"

[1] Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development. The Plant Journal, 1999,18(2):215-222.
[2] Wang H F, Wang H W, Liu R, et al. Genome-wide identification of TCP family transcription factors in Medicago truncatula reveals significant roles of miR319-targeted TCPs in nodule development. Frontiers in Plant Science, 2018,9:774.
[3] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize, Nature, 1997,386(6624):485-488.
[4] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum. Nature, 1996,383(6603):794-799.
[5] Aggarwal P, Das Gupta M, Joseph A P. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell, 2010,22:1174-1189.
[6] Dhaka N, Bhardwaj V, Sharma M K, et al. Evolving tale of TCPs:new paradigms and old lacunae. Frontiers in Plant Science, 2017,8:479.
[7] Martín-Trillo M, Cubas P. TCP genes:a family snapshot ten years later. Trends in Plant Science, 2010,15(1):31-39.
[8] Zhao J, Zhai Z, Li Y, et al. Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018,9:1282.
[9] Nicolas M, Rodriguezbuey M L, Francozorrilla J M, et al. A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Current Biology, 2015,25(14):1799-1809.
[10] Kieffer M, Master V, Waites R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 2011,68:147-158.
[11] Nag A, King S, Jack T. MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(52):22534-22539.
[12] Resentini F, Felipo-Benavent A, Colombo L, et al. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Molecular Plant, 2015,8(3):482-485.
[13] Gonzalez-Grandio E, Pajoro A, Franco Zorrilla J M, et al. Abscisic acid signaling is controlled by a BRANCHED1/H D-ZIP I cascade in Arabidopsis axillary buds. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(2):E245-E254.
[14] Zhou M, Li D Y, Li Z G, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology, 2013,161:1375-1391.
[15] Liu H, Wu M, Li F, et al. TCP Transcription factors in moso bamboo (Phyllostachys edulis):genome-wide identification and expression analysis. Frontiers in Plant Science, 2018,9:1263.
[16] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. The Plant Cell, 2007,19(2):473-484.
[17] Takeda T, Amano K, Ohto M A, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Molecular Biology, 2006,61:165-177.
[18] Zheng K, Ni Z, Qu Y, et al. Genome-wide identification and expression analyses of TCP transcription factor genes in Gossypium barbadense. Scientific Reports, 2018,8(1):14526.
[19] Aguilar-Martinez J A, Poza-Carrion C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007,19:458-472.
[20] Martin-Trillo M, Grandio E G, Serra F, et al. Role of tomato BRANCHED1- like genes in the control of shoot branching. Plant Journal, 2011,67(4):701-714.
[21] 刘洋, 张慧, 辛大伟, 等. 大豆TCP转录因子家族结构域分析及功能预测. 大豆科学, 2012,31(5):707-713,717.
[22] Parapunova V, Busscher M, Busscher-Lange J, et al. Identification,cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 2014,14(1):157.
[23] Francis A, Dhaka N, Bakshi M, et al. Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum. Scientific Reports, 2016,6:38488.
[24] Chai W, Jiang P, Huang G, et al. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. Physiology and Molecular Biology of Plants, 2017,23:779-791.
[25] Leng X, Wei H, Xu X, et al. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. BMC Genomics, 2019,20(1):786-786.
[26] Bertiolid J, C annon S B, F roenicke L, et al. The genome sequences of Arachis duranensis and Arachis ipaensis,the diploid ancestors of cultivated peanut. Nature Genetics, 2016,48(4):438.
[27] Zhuang W, Chen H, Yang M, et al. The genome of cultivated peanut provides insight into legume karyotypes,polyploid evolution and crop domestication. Nature Genetics, 2019,51(5):865-876.
[28] Xu R, Sun P, Jia F, et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica. Journal of Genetics, 2014,93(3):733-746.
[29] 王亚鹏. 马铃薯StTCP家族基因鉴定及其对块茎休眠解除的响应. 兰州:甘肃农业大学, 2019.
[30] 赵一彤, 魏戏梦, 薛超玲, 等. 枣TCP家族基因鉴定及其表达分析. 河北农业大学学报, 2019,42(5):39-45.
[31] Li W, Li D D, Han L H, et al. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum). Scientific Reports, 2017,7(1):10118.
[32] 华方静, 刘风珍, 万勇善, 等. 花生及其野生种质溶血磷脂酸酰基转移酶基因(LPAAT)的克隆及序列分析. 分子植物育种, 2014,12(1):74-79.
[33] Liu Y, Guan X, Liu S, et al. Genome-wide identification and analysis of TCP transcription factors involved in the formation of leafy head in Chinese cabbage. International Journal of Molecular Sciences, 2018,19(3):847.
[34] Huo Y Z, Xiong W D, Su K L, et al. Genome-Wide Analysis of the TCP Gene Family in Switchgrass(Panicum virgatum L.). International Journal of Genomics, 2019(1):1-13.
[35] Feng K, Hao J, Liu J, et al. Genome-wide identification,classification,and expression analysis of TCP transcription factors in carrot. Canadian Journal of Plant Science, 2019,99(4):525-535.
[36] Hubbard L, Mcsteen P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 2002,162(4):1927-1935.
[37] Finlayson S A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant and Cell Physiology, 2007,48(5):667-677.
[38] Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum. Cell, 1999,99(4):367-376.
[39] Broholm S K, Tähtiharju S, Laitinen R A, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(26):9117-9122.
[1] Xiu Junjie, Liu Xueliang. Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage [J]. Crops, 2023, 39(6): 174-180.
[2] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[3] Liu Sujun, Meng Meilian, Suriguga . Research on the Effects of Gene Expression in Sugar Metabolism Pathway of Potato by Drought Stress and Rehydration [J]. Crops, 2023, 39(1): 38-45.
[4] Cui Yaʼnan, Zhang Man, Zhang Penglei, Liu Bing, Hao Xi, Zang Xiuwang. Effects of H2O2 on the Seed Germination of Peanut under Imbibition and Chilling Injury [J]. Crops, 2022, 38(4): 236-241.
[5] Zhang Xiaoquan, Jia Zhenyu, Li Juxu, Li Hongchen, Wang Baoxiang, Wang Jian, Shi Gang, Wang Chuan, Wu Yunjie. Effects of Different Root-Promoting Practices on Potassium Metabolism at Mature Stage of Flue-Cured Tobacco in Southern Anhui [J]. Crops, 2022, 38(3): 205-210.
[6] Liu Ju, Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei. The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato [J]. Crops, 2022, 38(3): 92-98.
[7] Zhao Kai, Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen. The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves [J]. Crops, 2022, 38(2): 81-88.
[8] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[9] Gong Lintao, Su Xiujuan, Liao Yan, Keremuhan·Wusiman , Zhou Di, Yin Songsong. Cloning, Expression and Enzyme Activity Detection of Linalool Synthase Gene in Lavender [J]. Crops, 2021, 37(6): 78-87.
[10] Lin Ruxia, Guo Fengdan, Wang Xingjun, Xia Han, Hou Lei. Advances in Peanut Molecular Breeding [J]. Crops, 2021, 37(5): 1-5.
[11] Yu Tianyi, Zheng Yaping, Qiu Shaofen, Jiang Daqi, Wu Zhengfeng, Zheng Yongmei, Sun Xuewu, Shen Pu, Wang Caibin, Zhang Jiancheng. Effects of Calcium (Ca) Application in Acidified Soil on Ca Absorption, Utilization and Yield of Different Peanut Varieties (Lines) [J]. Crops, 2021, 37(4): 80-85.
[12] Suo Yanyan, Zhang Xiang, Si Xianzong, Li Liang, Yu Qiong, Yu Hui. Effects of Phosphorus and Calcium Applications on the Growth, Yield, and Phosphorus and Calcium Use Efficiency of Peanut [J]. Crops, 2021, 37(1): 187-192.
[13] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[14] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut [J]. Crops, 2018, 34(4): 102-105.
[15] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin [J]. Crops, 2018, 34(4): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!