Crops ›› 2021, Vol. 37 ›› Issue (4): 51-58.doi: 10.16035/j.issn.1001-7283.2021.04.008

Previous Articles     Next Articles

Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms

Li Qiong1(), Chang Shihao1, Wu Tingting2, Geng Zhen1(), Yang Qingchun1, Shu Wentao1, Li Jinhua1, Zhang Donghui1, Zhang Baoliang1   

  1. 1Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-03-14 Revised:2021-05-24 Online:2021-08-15 Published:2021-08-13
  • Contact: Geng Zhen E-mail:15290067998@163.com;gengzhen0616@163.com

Abstract:

Using 68 SSR markers covering 20 chromosomes, 120 soybean varieties (lines) including 67 Chinese soybean varieties (lines) and 53 introduced soybean varieties (lines) from America were used for genetic diversity and genetic relationship analysis. The results showed that the average values of the number of alleles (Na), effective alleles (Ne), Nei's gene diversity index (H), and Shannon's information index (I) between the varieties (lines) were 1.9852, 1.4343, 0.2776, and 0.4361, respectively, indicating the genetic diversity of 120 soybean germplasms was high. Genetic diversity in Chinese soybeans was higher than introduced soybeans from America. The genetic diversity index order of the seven populations was Huang-Huai-Hai area group > introduction resource group > tropical and subtropical area group > Yangtze River area group > northern spring soybean group > southwest mountainous group > fresh soybean group. The total genetic diversity (Ht) among all seven populations was 0.2807 while the genetic diversity (Hs) within populations was 0.2361, the coefficient of genetic differentiation (Gst) among populations was 0.1589 and the gene flow (Nm) was 2.6468. Low-medium genetic differentiation was identified among populations while genetic variation mainly existed within each group and gene flow in seven populations was abundant. The results of UPGMA clustering analyses using different populations and individual varieties (lines) as the unit were basically the same and some materials were interlaced in different groups. While soybean germplasms had a certain correlation with geographic origin, there were abundant gene exchanges among different regions. The genetic distances were close between varieties (lines) from the Huang-Huai-Hai area, southwest mountainous areas, tropical and subtropical area, and the Yangtze River area. However, the genetic distance between the varieties (lines) from America, northern spring varieties (lines), and fresh soybean varieties (lines) were distant. In consequence, these materials could provide favorable germplasms for broadening the genetic background.

Key words: Soybean, Germplasm resources, Genetic diversity, SSR

Table 1

Details of the tested soybean germplasms"

群体Population 品种(系)Cultivar (line) 来源Source
北方大豆组 合交2001-336-7、绥交08-5262、牡602 中国黑龙江
Northern spring soybean group (POP-1) 公交04-489-4 中国吉林
齐黄35 中国山东
黄淮海地区组 K117-3、中品12585、中作J10153、中黄13 中国北京
Huang-huai-hai area group (POP-2) 晋科1号、汾豆90 中国山西
宁豆5号 中国宁夏
沧豆11、石豆6号、邯豆5号 中国河北
郑豆0689、秋乐1205、濮豆1802、周豆22、许豆0406、驻豆03-16、安豆5156 中国河南
蒙0804、皖宿1128、益科豆112-1 中国安徽
潍豆80031、鲁97013-1、菏01-7、济087129、齐黄34、圣豆LU05、南圣43 中国山东
徐9418-2 中国江苏
长江流域地区组 苏HT012、泗豆209、苏夏13-13、南农56-10、通豆7号 中国江苏
Yangtze River basin area group (POP-3) 兴豆2号、中豆8号、油07-73、天隆一号 中国湖北
秋乐1302 中国河南
蒙11-1 中国安徽
鲜食大豆组Fresh soybean group (POP-4) 杭豆3-2、浙9815、浙鲜豆5号、浙09006、杭鲜豆2号 中国浙江
K丰77-2、开科源特早、辽04M05-4 中国辽宁
西南山区组 安07109 中国贵州
Southwest mountain group (POP-5) 滇豆7号 中国云南
黔豆2012-1 中国贵州
贡2026R 中国四川
粤春2011-2 中国广东
热带亚热带地区组 贡豆723-2 中国四川
Tropical and subtropical area group (POP-6) 华春6号、粤春2010-1、华春2号、粤夏2012-1 中国广东
桂早1号、桂春豆103、桂147 中国广西
泉豆7号、泉豆5号 中国福建
引进材料Imported materials (POP-7) AD01~AD53 美国

Table 2

Polymorphism information of SSR primers in the tested materials"

编号
No.
引物
Primer
连锁群
Linkage group
多态位点数
Polymorphic locus
PIC
PIC value
编号
No.
引物
Primer
连锁群
Linkage group
多态位点数
Polymorphic locus
PIC
PIC value
1 Sat_143 G 4 0.914 35 satt272 B2 2 0.470
2 Sat_292 D2 4 0.871 36 satt279 H 3 0.865
3 Sat_219 I 4 0.911 37 satt286 C2 3 0.865
4 Sat_304 N 4 0.899 38 satt300 A1 3 0.822
5 Sat_282 O 2 0.810 39 satt302 H 2 0.760
6 Sat_271 A1 2 0.826 40 satt307 C2 3 0.869
7 Satt130 G 2 0.991 41 satt309 G 3 0.874
8 Satt132 J 2 0.400 42 satt334 F 2 0.823
9 Satt142 H 2 0.290 43 satt335 F 2 0.786
10 Satt146 F 3 0.883 44 satt338 C1 4 0.904
11 Sat_020 K 3 0.901 45 satt339 N 3 0.891
12 Sat_076 C2 4 0.774 46 satt343 F 5 0.862
13 sat_207 C1 3 0.518 47 satt346 M 2 0.725
14 Sat_342 B2 4 0.915 48 satt373 L 5 0.931
15 Sat_292 D2 3 0.871 49 satt386 D2 2 0.560
16 Satt001 J 4 0.847 50 satt423 F 2 0.805
17 Satt002 D2 3 0.822 51 satt429 A2 2 0.687
18 Satt005 D1b 3 0.822 52 satt431 J 3 0.776
19 Satt022 N 2 0.800 53 satt429 A2 3 0.875
20 Satt168 B2 3 0.577 54 satt434 H 4 0.879
21 Satt182 L 2 0.880 55 satt453 B1 3 0.893
22 Satt184 D1a 3 0.775 56 satt463 M 4 0.899
23 Satt187 A2 2 0.730 57 satt530 N 3 0.873
24 Satt191 G 3 0.748 58 satt553 D2 3 0.869
25 Satt194 C1 2 0.467 59 satt556 B2 3 0.642
26 Satt216 D1b 4 0.900 60 satt565 C1 4 0.893
27 Satt199 G 3 0.855 61 satt571 I 3 0.867
28 Satt197 B1 3 0.840 62 satt573 D2 2 0.768
29 Satt228 A2 3 0.744 63 satt577 B2 3 0.848
30 Satt239 I 2 0.752 64 satt588 K 3 0.821
31 Satt243 O 3 0.823 65 satt590 M 4 0.843
32 satt254 D1a 3 0.764 66 satt599 A1 3 0.895
33 satt257 N 2 0.789 67 satt631 N 4 0.919
34 satt268 D2 4 0.920 68 satt708 C2 3 0.842

Table 3

Genetic diversity indexes of soybean germplasm materials between seven populations"

群体
Population
Na Ne H I 多态位点数
Number of polymorphic sites
PPB
(%)
Ht Hs Gst 基因流Nm
POP-1~POP-6 1.9803 1.4196 0.2710 0.4282 199 98.03
POP-7 1.9261 1.3985 0.2501 0.3916 188 92.61
总体Total 1.9852 1.4343 0.2776 0.4361 200 98.52 0.2807 0.2361 0.1589 2.6468

Table 4

Genetic diversity indexes of seven populations of soybean germplasm materials"

群体Population Na Ne H I
POP-1 1.6749 1.3734 0.2254 0.3430
POP-2 1.9606 1.4208 0.2678 0.4209
POP-3 1.8227 1.3850 0.2403 0.3741
POP-4 1.6798 1.3429 0.2075 0.3194
POP-5 1.6453 1.3611 0.2193 0.3329
POP-6 1.8177 1.3949 0.2424 0.3753
POP-7 1.9261 1.3985 0.2501 0.3916

Table 5

Genetic similarity (GI) and genetic distance (GD) between different soybean populations"

群体
Population
POP-1 POP-2 POP-3 POP-4 POP-5 POP-6 POP-7
POP-1 * 0.9399 0.9202 0.8992 0.8950 0.9236 0.9485
POP-2 0.0620 * 0.9749 0.9257 0.9533 0.9622 0.9633
POP-3 0.0832 0.0254 * 0.9068 0.9572 0.9576 0.9345
POP-4 0.1062 0.0772 0.0978 * 0.8972 0.8988 0.9205
POP-5 0.1109 0.0478 0.0438 0.1084 * 0.9380 0.9160
POP-6 0.0795 0.0385 0.0434 0.1067 0.0640 * 0.9475
POP-7 0.0529 0.0374 0.0678 0.0829 0.0878 0.0539 *

Fig.1

UPGMA tree plot of soybean germplasm materials of seven populations"

Fig.2

UPGMA tree of SSR marker cluster analysis of 120 soybean germplasm resources"

[1] 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展. 中国农业科学, 2004,37(7):954-962.
[2] Hymowitz T, Newell C A. Taxonomy of the genus Glycine,domestication and uses of soybeans. Economic Botany, 1981,35(3):272-288.
[3] 夏正俊. 大豆基因组解析与重要农艺性状基因克隆研究进展. 植物学报, 2017,52(2):148-158.
[4] 郭文韬. 略论中国栽培大豆的起源. 南京农业大学学报(社会科学版), 2004,4(1):60-69.
[5] 傅旭军. 大豆种质资源遗传多样性分析及其利用研究. 杭州:浙江大学, 2009.
[6] 蒲艳艳, 宫永超, 李娜娜. 中国大豆种质资源遗传多样性研究进展. 大豆科学, 2018,37(2):315-321.
[7] 钟文娟, 袁灿, 周永航, 等. 基于SSR标记的四川大豆与引进大豆资源遗传多样性和群体结构分析. 大豆科学, 2017,36(5):657-668.
[8] Wang L X, Guan R X, Liu Z X, et al. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science, 2006,46(3):1032-1038.
[9] Wang L X, Guan R X, Liu Z X, et al. Genetic diversity of Chinese spring soybean germplasms revealed by SSR markers. Plant Breeding, 2008,127(1):56-61.
[10] Iquira E, Gagnon E, Belzile F. Comparison of genetic diversity between Canadian adapted genotypes and exotic germplasm of soybean. Genome, 2010,53(5):337-345.
[11] Doyle J J. Isolation of plant DNA from fresh tissue. Focus, 1990,12(1):13-15.
[12] Burnham K D, Francis D M, Dorrance A E, et al. Genetic diversity patterns among phytophthora resistant soybean plant introductions based on SSR markers. Crop Science, 2002,42(2):338-343.
[13] Zhang J, Hu K, Li K J, et al. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil and Tillage Research, 2017,165:302-314.
[14] 朱振东, 王化波, 王晓鸣, 等. 黑龙江主要栽培大豆品种(系)对大豆疫霉根腐病的多抗性评价. 植物遗传资源学报, 2004,5(1):22-25.
[15] 王衍莉, 杨义明, 范书田, 等. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析. 生物技术通报, 2021,37(1):189-197.
[16] 石慧, 王思明. 大豆在中国的历史变迁及其动因探究. 农业考古, 2019(3):32-39.
[17] 文自翔. 中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析. 南京:南京农业大学, 2008.
[18] 朱申龙, Morti M L, Rao R. 应用AFLP方法研究中国大豆的遗传多样性. 浙江农业学报, 1998,10(6):302-309.
[19] 周新安, 彭玉华, 王国勋, 等. 中国栽培大豆遗传多样性和起源中心初探. 中国农业科学, 1998,31(3):37-43.
[20] 王彩洁, 孙石, 金素娟, 等. 中国大豆主产区不同年代大面积种植品种的遗传多样性分析. 作物学报, 2013,39(11):1917-1926.
[21] 盖钧镒. 作物遗传育种学各论:第2版. 北京: 中国农业出版社, 1997.
[22] 宋喜娥, 李英慧, 常汝镇, 等. 中国栽培大豆[Glycine max (L.) Merr.]微核心种质的群体结构与遗传多样性. 中国农业科学, 2010,43(11):2209-2219.
[23] Ude G N, William J, Kenworthy , et al. Genetic diversity of soybean cultivars from China,Japan,North America,and North American ancestral lines determined by amplified fragment length polymorphism. Crop Science, 2003,43(5):1858-1867.
[24] Nichols D M, Wang L Z, Yan L P, et al. Variability among Chinese Glycine soja and Chinese and North American soybean genotypes. Crop Science, 2007,47(3):1289-1298.
[25] 盖钧镒, 赵团结. 中国大豆育种的核心祖先亲本分析. 南京农业大学学报, 2001,24(2):20-23.
[26] 田清震, 盖钧镒, 喻德跃, 等. 我国野生大豆与栽培大豆AFLP指纹图谱研究. 中国农业科学, 2001,34(5):480-485.
[27] 盖钧镒. 植物种质群体遗传结构改变的测度. 植物遗传资源学报, 2005,6(1):1-8,14.
[28] 韩天富, 盖钧镒. 世界菜用大豆生产、贸易和研究的进展. 大豆科学, 2002,21(4):278-284.
[1] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[2] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[3] Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201.
[4] Qin Ning, Li Junru, Li Wenlong, Du Hui, Li Xihuan, Zhang Caiying. Screening of Elite Germplasms and Identification of Seed Tocopherol and Its Component Contents in Soybean [J]. Crops, 2021, 37(3): 34-39.
[5] Xiang Chao, Sun Suli, Zhu Zhendong, Zong Xuxiao, Yang Tao, Liu Rong, Yang Mei, Xian Dongfeng, Yang Xiuyan. Resistance and Molecular Identification to Powdery Mildew of Pea Germplasms in Sichuan [J]. Crops, 2021, 37(3): 51-56.
[6] Su Yang, Yang Jing, Guo Yong, Du Weijun, Qiu Lijuan. Whole Genome Discovery and Analysis of Genes Related to 100-Seed Weight in Soybean [J]. Crops, 2021, 37(3): 8-18.
[7] Li Candong, Guo Tai, Wang Zhixin, Zheng Wei, Zhao Haihong, Zhang Zhenyu, Xu Jiefei, Guo Meiling. Evaluation and Determination of Yield Evaluation Indicators of Soybean Mainly Cultivated Varieties in the Central and Eastern of Heilongjiang Province [J]. Crops, 2021, 37(2): 45-51.
[8] Ma Mingchuan, Liu Longlong, Liu Zhang, Zhou Jianping, Nan Chenghu, Zhang Lijun. Analysis of SSR Loci in Whole Genome and Development of Molecular Markers in Tartary Buckwheat [J]. Crops, 2021, 37(1): 38-46.
[9] Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53.
[10] Yang Wanjun, Pan Xiangyu, Wang Xiuhua, Wang Lu, Zhao Yan. Genetic Diversity Analysis of Yield and Agronomic Traits of 119 Alfalfa Varieties (Lines) [J]. Crops, 2020, 36(6): 17-22.
[11] Wang Caijin, Di Wenjing, Ma Shumei, Wang Yang. Mining the Elite Allele of Resistance of Cercospora sojina Hara Race 1 in Soybean Resources [J]. Crops, 2020, 36(6): 189-196.
[12] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Peng Qiu. Phenotypic Diversity and Clustering Analysis of Sorghum Germplasm Resources in Different Regions of Guizhou Province [J]. Crops, 2020, 36(6): 54-60.
[13] Zhao Yuyang, Song Jian, Qiu Lijuan. Proteomic Comparation Analysis of Thylakoid in Leaves of G-Locus Near Isogenic Line in Soybean [J]. Crops, 2020, 36(6): 8-16.
[14] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[15] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!